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a b s t r a c t 

Speckle reduction is a crucial prerequisite of many computer-aided ultrasound diagnosis and treatment 

systems. However, most existing speckle reduction filters tend to concentrate the blurring near the 

features and introduce the hole artifacts, making the subsequent processing procedures complicated. 

Optimization-based methods can globally distribute such blurring, leading to better feature preservation. 

Motivated by this, we propose a novel optimization framework based on L 0 minimization for feature pre- 

serving ultrasound speckle reduction. We present an observation that the GAP, which integrates gradient 

and phase information, is extremely sparser in despeckled images (output) than in speckled images (in- 

put). Based on this observation, we propose an L 0 minimization framework to remove speckle noise and 

simultaneously preserve features in the ultrasound images. It seeks for the L 0 sparsity of the GAP val- 

ues, and such sparsity is achieved by reducing small GAP values to zero in an iterative manner. Since 

features have larger GAP magnitudes than speckle noise, the proposed L 0 minimization is capable of ef- 

fectively suppressing the speckle noise. Meanwhile, the rest of GAP values corresponding to prominent 

features are kept unchanged, leading to better preservation of those features. In addition, we propose 

an efficient and robust numerical scheme to transform the original intractable L 0 minimization into sev- 

eral sub-optimizations, from which we can quickly find their closed-form solutions. Experiments on syn- 

thetic and clinical ultrasound images demonstrate that our approach outperforms other state-of-the-art 

despeckling methods in terms of noise removal and feature preservation. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Ultrasonography has become one of the most favorable imaging

modalities in a wide range of clinical applications because it is

safe, real-time and cost effective. However, ultrasound images are

usually corrupted with granular patterns of white and dark spots

that are referred as speckle [1] . Although speckle is sometimes

considered as diagnostic clues on certain occasions, it has adverse

effects on precise diagnosis and treatment in most cases [2] . In

addition, speckle complicates automatic processing and analysis

procedures of ultrasound images [3] , including detection, segmen-

tation, registration, and so on. Therefore, speckle reduction is a

crucial prerequisite of many intelligent ultrasound systems [4] . 
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Many ultrasound speckle reduction methods have been pro-

osed. These methods can be roughly classified into two groups:

avelet-based filters [5] and spatial filters [2,6,7] . Assuming that

he multiplicative speckle noise can be transformed into addi-

ive Gaussian noise by the logarithm operation, Wavelet-based

ethods decomposed the content of the transformed image into

ultiple sub-bands at different orientations and resolution scales.

lthough those methods can effectively remove speckle noise,

hey tended to produce the ringing artifacts when preserving

eatures [8] . By exploiting the spatial correlation, spatial filters

omputed a despeckling result as a weighted average on a set

f candidates. According to the candidate selection, those filters

re divided into the local filters [6,9] and nonlocal filters [7] .

owever, spatial filters would concentrate the blurring near edges

nd introduced the hole artifacts [10] . In order to overcome such

imitation, the optimization-based approaches have been proposed

ith state-of-the-art results in many image processing tasks [11] .

hose methods globally distributed such blurring in spatial filters

https://doi.org/10.1016/j.neucom.2018.03.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.03.009&domain=pdf
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Fig. 1. Comparison of speckle reduction on an ultrasound image with gallstones, and the evaluation of the feature contrast preservation. (a) Original image with the intensity 

profile (blue curve) in a horizontal line. Despeckled result with its intensity profile (red curve) by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , (g) 

BNLTV [20] , (h) LDCNN [21] , and (i) our method (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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nto each pixel [12] , causing excellent restored results without

ole artifacts. In addition, the spatial filters cannot preserve sharp

dges like the global optimization based filters [12] . Recently,

 global optimization based despeckling method, which assigns

ifferent penalties for speckle noise and features in a weighted-

east-squares filter manner [13] , is proposed in [14] . However,

n order to suppress speckle noise, salient edges unavoidably

eceived some penalties, leading to reduce feature contrasts and

lur features in some degrees. To circumvent this problem, Xu

t al. [11] proposed a L 0 norm based optimization to globally

ontrol how many non-zero entries are maintained using progres-

ively thresholding procedures, and thus non-zero salient edges

an be better preserved. Unfortunately, directly employing existing

 0 minimization [11,15–17] cannot achieve satisfactory results for

peckle reduction, since the gradient information is inefficient to

ifferentiate f eatures from speckle noise in ultrasound images [18] .

In this paper, we proposed a novel global optimization based

n an L 0 minimization framework for feature-preserving speckle

eduction in ultrasound images. Motivated by the sparseness

rior of the image gradient and the feature detection capability

f the local phase based feature asymmetry ( FA ) operator [22] ,

e defined a new measurement (namely GAP ) combining the

radient and the FA operators together. The GAP inherits those two

roperties. Consequently, we proposed a L 0 GAP minimization for

peckle reduction in ultrasound image. It seeks for the L 0 sparsity

f the GAP by progressively reducing low GAP values, which cor-

espond to the speckle noise, to zero. Meanwhile, the significant

eatures with high GAP values are kept unchanged. The proposed

pproach also has better performance in preserving low contrast

eatures than existing despeckling methods, due to the intensity

nvariant property of the phase-based operator ( FA ) for feature

etection. In addition, we proposed an efficient solver to minimize

he proposed L 0 regularized objective function. A variable splitting

trategy is employed to transfer the original optimization into the

terative optimization of a non-linear quadratic optimization and

 L 0 regularized least square with a hard thresholding closed-form

olution. For the non-linear quadratic optimization, the nonlinear

A measurement is linearized, producing a series of pure quadratic

inimizations, for which an efficient and robust solution exists.

ig. 1 compares the despeckling performance of different methods.

s shown in the top row, the proposed approach effectively pre-

erves the boundaries of important features while other methods

end to blur the edges in different degrees (see the green rect-

ngle). The advantages of our approach can be further verified

y carefully checking the intensity profile of a horizontal line in

he bottom row. When smoothing out the intensity fluctuations

aused by speckle noise, existing methods also remove or largely

educe the intensity peaks at some features. In contrast, our

pproach hardly alters the intensity values of those peaks so

hat the features are almost totally retained in the despeckled

mage. 
The contributions of this paper can be summarized as: 

• We present a sparsity prior in the ultrasound image based on

the observation that the GAP values in the despeckled image is

highly sparser than that in the speckled image. 
• We propose a L 0 norm regularized global optimization frame-

work to seek for the GAP sparsity. During the pursuit of the

sparsity, the proposed L 0 minimization can eliminate speckle

noise in ultrasound images and better preserve features than

previous despeckling techniques. 
• We propose an efficient and robust solver to minimize the

proposed objective function by first splitting the intractable

problem into tractable sub-problems with half-quadratic split-

ting method, followed by the decomposition of the non-convex

sub-problem into linear systems using iteratively re-weighted

least squares. 

This work extends its conference version [23] with differ-

nces as follows: (1) We refine the optimization procedure of

ur numerical solution in Section 3.3 , where we present how

e devise the solution (shown in Eq. 11 ) of a non-linear term

egularized quadratic optimization (see Eq. 9 ) using the iterative

e-weighted least squares (IRLS) framework, as well as the solution

see Eq. 15 ) of the L 0 regularized least squares (see Eq. 12 ) in the

ppendix section. (2) We provide more validations (including

omparisons with four recent despeckling works [8,14,20,21] ),

ore comparisons on new clinical images, and more results of

ur method on new clinical images. (3) We add a new application

n Section 4.5 by comparing the lesion boundary preservation of

ifferent despeckled results, as shown in Fig. 15 . From the results,

e can find that our despeckled result has smallest MRD (see

q. (20) for its definition) value among all the MRD results, which

mplies that the despeckling method has a better edge preservation

fter speckle reduction, compared to other despeckling techniques.

e will release our code upon the publication of this work. 

The remainder of this paper is organized as follows. We first

eview some related works in Section 2 . After that, details of our

pproach are described in Section 3 , and Section 4 presents many

xperimental results on both synthetic and clinical ultrasound

mages, and two applications about the segmentation and the

umor boundary preservation. Finally, we conclude the paper and

iscuss some future work in Section 5 . 

. Related work 

Many despeckling methods have been proposed in the litera-

ure, and they can be categorized into two classes. The first one

s the wavelet-based filters, which assumed that multiplicative

peckle noise can be transformed into the additive Gaussian noise

y the logarithm operation. After the logarithm transformation, the

mage content was decomposed into multiple. Large coefficients

orresponded to the important low frequency information (e.g.,
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edges), and noise and image details lied in the high frequency

sub-bands. Usually, thresholding techniques were applied to the

small coefficients for noise removal. Khare et al. [24] detected

strong edges using the imaginary part of the complex scaling

coefficients and then performed the shrinkage on the magnitude

of complex wavelet coefficients at non-edge pixels. The threshold

value of the shrinkage was determined by the statistical parame-

ters of complex wavelet coefficients of the noised image. Recently,

Esakkirajan et al. [5] proposed an adaptive wavelet packet domain

filtering for speckle reduction. They produced a rich set of bases

with the wavelet packet decomposition technique and then the

singular value decomposition was used to select the best basis.

The modified NeighShrink thresholding technique was executed

on all other sub-bands, except the sub-band with the largest sin-

gular value. Wavelet-based despeckling techniques can effectively

preserve texture details, but they tend to produce ringing artifacts

when preserving features [8] . 

Another direction for speckle reduction in ultrasound images is

the spatial filters. Those methods compute a despeckling output

by utilizing the spatial correlation existing in images. One is to ex-

tend the nonlinear anisotropic diffusion filtering (ADF) [25] for the

ultrasound data corrupted with speckle noise. They [2,19,26] en-

couraged the isotropic diffusion in the homogeneous regions for

noise removal, while stop the diffusion between homogeneous

regions for feature preservation. Yu and Acton [19] proposed the

speckle reducing anisotropic diffusion (SRAD) by involving the

edge-sensitive instantaneous coefficient of variation to determine

whether a pixel should be smoothed or left intact in the ultra-

sound image. Zhang et al. [27] employed the Laplacian pyramid to

decompose the image into different sub-bands and then applied

anisotropic diffusion with different diffusion fluxes to suppress

the noise in each sub-band layer. Yu et al. [18] devised a diffusion

framework by using the Smallest Univalue Segment Assimilating

Nucleus (SUSAN) operator to act as the edge detector. Recently,

Flores et al. [2] proposed a ADF based despeckling method for

the breast ultrasound image, where the conduction coefficient

parameter involved in the ADF was adaptively selected for each

pixel under the guidance of the 2D Log-Gabor filter response.

Even though these diffusion based despeckling techniques can

progressively smooth the speckled image, a lot of meaningful

details are also discarded. 

Another spatial filter group is to estimate the despeckled result

of each pixel by weighted averaging on pixels in a local region

or the entire image. Early investigations focus on adaptive filters,

e.g., Kuan filter [28] . Those despeckling methods evaluated the

variation degree inside the filtering window, so that regions with

the low coefficient of variation were smoothed by the low-pass

filtering for eliminating speckle noise, while regions with the high

variation coefficient were with the identity filtering for protecting

features. Tay et al. [9] proposed the squeeze box filter (SBF) based

upon removing outliers with a local extremum. By replacing these

outliers with the local mean in each iteration, the SBF method

compressed the image pixel values, so that the differences in

interclass means were protected for feature preservation, while

the interclass variance was reduced for speckle noise removal.

Balocco et al. [6] proposed an automatic bilateral filter dedicated

for the ultrasound images by embedding the noise statistics into

the weighting scheme of the original bilateral filter framework.

Taking the assumption that there are many repetitive patches in

the image, the non-local means (NLM) method [29] averaged all

pixels in the entire image, and the weights were computed by the

weighted Euclidean distance between two patches. This strategy

leads to a more robust denoising performance when compared to

local filters. However, the original NLM was designed for suppress-

ing the additive Gaussian noise in 2D natural images, and thus

several despeckling techniques were proposed to adapt the NLM
ethod for the multiplicative speckle noise model in ultrasound

mages. Couple et al. [7] utilized the Bayesian theory to define a

earson distance for patch comparisons and implemented the NLM

ethod in the block-wise manner to decrease the computational

urden. Recently, Yang et al. [8] combined local statistics of the

ltrasound image and NLM filter to reduce speckle in ultrasound

mages. However, when there are not enough similar patches

ithin the ultrasound image, those methods tend to produce

evere artifacts and the performance degrades significantly. 

Recently, many attractions in the image processing domain

as transformed from the spatial filters to the global opti-

ization [10,11,13] , which usually consisted of a data term and

egularization terms. Compared to the spatial filters, global op-

imization outperformed in the sharp feature preservation [12] .

n addition, spatial filters would concentrate the blurring near

hese edges and introduce the holes while the global optimization

ased methods would globally distribute such blurring to each

ixel of the image. Although a recent study [14] formulated a

lobal method for speckle reduction, but it tend to penalize the

alient edges. Recently, an advanced optimization framework,

alled L 0 minimization, is presented by globally counting the

umber of non-zero entries to approximate the underlying signal

n a sparsity-control manner, and thus salient structures with

arge entry values are allowed in the output image, causing better

reservation of those important edges. Unfortunately, existing

 0 minimization models [11,15–17] employed the pixel intensity

ifference (e.g., gradient information) to seek for the sparsity.

hen applying those methods for despeckling, speckle noise and

eatures will receive similar penalties, since ultrasound speckle

anifests itself as a form of multiplicative noise, which indicates

hat variances (including gradient magnitudes) caused by speckle

oise are comparable or even larger than edges [18] . Note that sev-

ral works developed the deep learning frameworks for additive

aussian noise removal [21] or image classification [30] , but those

eep models are trained in a different noise distribution from the

peckle noise in ultrasound images. Hence, those methods tend

o blur features while eliminating speckle noise of ultrasound

mages; see Figs. 1, 3 , 4 , 6 –10 , 14 , 15 . 

. Methods 

In this paper, we propose a L 0 minimization tailored for speckle

eduction in ultrasound images. Specifically, we propose to seek

or the sparsity of the term GAP ( Sections 3.1 and 3.2 ), since it can

ffectively separate f eatures and speckle noise in ultrasound im-

ges, and progressively reducing small GAP values to 0 by solving

he L 0 minimization enables speckle noise to be suppressed. More-

ver, we devise an efficient optimization procedure based on the

alf-quadratic splitting technique and the iteratively re-weighted

east squares framework to solve the proposed L 0 minimization

 Section 3.3 ). 

.1. Feature asymmetry 

Local energy model developed in [31] postulates that features

re perceived at points where the phase information is highly

oherent. Based on this assumption, the features in the image

an be located by analyzing the phase pattern of each pixel [32] .

nspired from this, Belaid et al. [22] presented a local phase-based

perator, feature asymmetry (FA) [33] , using Cauchy filters, to

easure the significance of features in ultrasound images: 

F A = 

�| R o |−| R e |−�� √ 

R 2 o + R 2 e + ε 1 
, 

R o = g ∗ S, R e = (g ∗ z 1 ∗ S, g ∗ z 2 ∗ S) , 
(1)

here � describes the estimated noise threshold and � · � is the

eroing operation of negative values; ε is a constant to avoid
1 
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Fig. 2. Statistical analysis of GAP: (a) a clean image, (b) corresponding synthetic speckled image (noise variance σ 2 = 0.08), (c) GAP map of (a), (d) GAP magnitude histogram 

of (c), (e) GAP map of (b), (f) GAP magnitude histogram of (e). Despeckled result of (b) by L 0 gradient minimization [11] and (h) our method. Obviously, GAP is much sparser 

in the despeckled image, compared to the speckled image. 
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ivision by zero, and its value is set as 0.0 0 01; z 1 and z 2 are the

iesz filters; g is the Cauchy filter. In the frequency domain, the

efinition of g [34] is given by: 

 (θ ) = | θ | ϕ exp (−t | θ | ) 
√ 

π4 

ϕ+1 t 2 ϕ+1 

�(2 ϕ + 1) 
, (2)

here � is the gamma function; θ denotes the normalized coor-

inates of each pixel. ϕ and t are the bandwidth and the scaling

arameter of the Cauchy kernel, respectively. The value of the FA

easure ranges between 0 and 1, close to 0 in smooth regions and

lose to 1 near the features. 

Note that the scale parameter t in the Cauchy kernel is im-

ortant for the quality of edge detection. Generally, details and

iscontinuities are maintained in fine scales while coarse scales

reserve the regularities and continuities of the boundaries. Hence,

nding the optimal scale that fits to the features in the image is

ery crucial because a finer scale might include unwanted details

hile a coarser scale might miss important features. We employ

he following γ normalized edge strength measure 
γ [14,35] for

ptimal scale selection: 

γ = −t 3 γ (H 

3 
x H xxx + 3 H 

2 
x H y H xxy + 3 H x H 

2 
y H xyy + H 

3 
y H yyy ) . (3)

ere, γ = 0 . 5 , as suggested in [14,35] , H is the filtered image

btained by convolving the input image with the Cauchy kernel at

cale t; H (.) denotes the partial derivative operator. To determine

he optimal scale, we analyze the intensity distribution of 
γ

ver all a scale range and then select the one where the sum of

ntensities achieves the maximal value. 

.2. The proposed L 0 minimization framework 

Given an ultrasound image J , we define a new measurement,

alled GAP , by combining Gradient And Phase information: 

AP (J) = ∂ x J 
2 + ∂ y J 

2 + F A (J) 2 , (4)

here ∂ x J 2 and ∂ y J 2 are the gradient map at the x and y direction,

espectively. FA ( J ) denotes the feature map obtained by applying

he local phase based feature asymmetry on J using Eq. (1) .

asically, due to the combination of FA and gradient information,

AP can be considered as a feature detector in the ultrasound

mage, and it also has a sparse prior between the input ultrasound

mage and its despeckled one. Owing to these two properties, the

AP can guide our L 0 minimization to effectively remove speckle

oise and simultaneously preserve underlying features which is

chieved by progressively reducing smaller GAP values, which are

orresponding to the speckle noise, to 0, while hardly altering

arger GAP values corresponding to the features. 

The proposed GAP can inherit characteristics of both the gradi-

nt information and the phase based FA , as shown in Fig. 2 . First,

AP can be a good edge indicator in speckled images. Fig. 2 (b) is a

ynthetic speckled image generated from a clean image ( Fig. 2 (a))

y employing a theoretical speckle noise model [7] on it. The GAP
ap of Fig. 2 (b) is shown by Fig. 2 (e), in which the boundaries of

ifferent shape objects have larger GAP values than speckle noise.

econd, it is well known that a clean image has a sparser gradient

agnitude distribution than its corresponding speckled image. We

nd that the GAP magnitude also has such sparse prior. Fig. 2 (c)

nd (d) are the GAP map and GAP histogram of Fig. 2 (a), respec-

ively. It is obvious that only pixels at edges have non-zero GAP

alues and we can observe apparent zero peaks in the GAP his-

ogram distribution. In contrast, for the speckled image ( Fig. 2 (b)),

ts GAP distribution ( Fig. 2 (f)) cannot be modeled by narrow peaks.

Motivated by these two properties of the GAP , we propose a

ovel L 0 minimization for feature-preserving ultrasound speckle

eduction: 

in 

D 

{ ∑ 

q 

(D q − I q ) 
2 + λ · P (D ) 

} 

, where P (D ) = # 

{ 

p| | GAP (D ) p | � = 0 

} 

. 

(5) 

ere, I is the input image and D is the despeckled image; q is

he pixel coordinate; # {} is a counting operator, outputting the

umber of p that satisfies | GAP ( D ) p | � = 0; P ( D ) is the L 0 norm of the

AP . It globally counts the number of pixels whose GAP values are

on-zero in the image D. λ is a weight to control the significance

f the GAP sparsity, and it in fact represents the noise removal

bility of the proposed method. Fig. 2 (g) shows the despeckled

esult of Fig. 2 (b) via L 0 gradient minimization [11] . We can see

hat it over-smooths the shape boundaries in Fig. 2 (b), because

he L 0 minimization with the gradient magnitude [11] could not

istinguish features from the noise and smooth out many features

uring ultrasound speckle reduction. On the contrary, thanks

o the better edge detection capability of the GAP , our method

an effectively eliminate speckle noise and well protect shape

oundaries simultaneously, as shown in Fig. 2 (h). 

.3. Numerical solution 

Solving a L 0 norm regularized objective function is usually

onsidered as computational intractable, because the first data

erm models the pixel-wise difference and the second regular-

zation term represents a global L 0 metric [11] . We propose an

fficient solver for our L 0 minimization based on the half-quadratic

plitting method [36,37] and iteratively re-weighted least squares

ramework (IRLS) [38] . First, three auxiliary variables u, v and w

re introduced to represent ∂ x D , ∂ y D and FA , leading to a new

nergy function: 

min 

,u, v ,w 

{∑ 

q 

(D q − I q ) 
2 + β

(
(∂ x D q − u q ) 

2 + (∂ y D q − v q ) 2 
)

+ 

(
F A (D ) q − w q 

)2 + λ · P (u, v , w ) 

}
, (6) 

here q is the pixel index; P (u, v , w ) = # 

{
p| u 2 p + v 2 p + w 

2 
p � = 0 

}
; β

ontrols the similarity between ( ∂ x D , ∂ y D, FA ) and ( u, v, w ), and
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its value is increased by iteratively multiplying a constant value

k . When β → ∞ , the solution of Eq. (6) converges to the one of

Eq. (5) . By initializing D as I , we minimize Eq. (6) for a given

β by solving two tractable sub-problems to update D and those

auxiliary variables ( u, v, w ) alternatively: 

Sub-problem 1: Updating D. Given estimated values of ( u, v,

w ) from previous iteration, we update D by solving: 

min 

D 

{∑ 

q 

(D q − I q ) 
2 + β

(
(∂ x D q − u q ) 

2 + (∂ y D q − v q ) 2 

+ 

(
F A (D ) q − w q 

)2 
)}

. (7)

Unfortunately, due to the nonlinear property of FA ( D ) (see

Eq. (1) ), the above quadratic optimization is still highly non-

convex, and it is non-trivial to solve the minimization. Gradient

descent methods require tens or hundreds of iterations, and the

solution is sensitive to the initialization. Inspired by the iteratively

re-weighted least squares framework (IRLS) [38] , we propose a

numerical solver to transform the highly non-convex optimization

into solving a series of sparse linear equations, for which fast

and robust solutions exist. The key idea is to decompose the

nonlinear FA ( D ) q into a linear term D q and a nonlinear term f q by

multiplying D q at the numerator and denominator of FA ( D ) q : 

F A (D ) q ≈ F A (D ) q 
D q + ε 2 

∗ D q = f q ∗ D q , where f q = 

F A (D ) q 
D q + ε 2 

, (8)

where ε2 is a small constant to avoid division by zero, and it value

is empirically set as 0.0 0 01. By incorporating f q and D q , we can

re-formulate the minimization in Eq. (7) as: 

min 
D 

{ ∑ 

q 

(D q − I q ) 
2 + β

(
(∂ x D q − u q ) 

2 + (∂ y D q − v q ) 2 + 

(
f q D q − w q 

)2 
)} 

. 

(9)

Vector form. We re-write Eq. (9) using a vector form: 

min 
V D 

(V D − V I ) 
T (V D − V I ) + β

(
(C x V D − V u ) 

T (C x V D − V u ) 

(C y V D − V v ) 
T (C y V D − V v ) + (F V D − V w ) 

T (F V D − V w ) 

)
, (10)

where V D , V I , V u , V v and V w are the vector representation of D, I,

u, v , and w respectively; C x and C y are the Toeplitz matrices from

the discrete gradient operators [39] ; F is a diagonal matrix, and its

i th diagonal element is: F [ i, i ] = f i ; Owing to the separation FA ( D ) q
into the nonlinear f q and the linear D q , we can naturally obtain

a numerically stable approximation by iteratively performing the

following two steps, in a way similar to the iteratively re-weighted

least squares (IRLS) optimization framework: 

Step 1: Compute f q with the estimated despeckled image D . 

Step 2: Fixing f q , we update D by solving the following sparse lin-

ear system: 

(� + βC T x C x + βC T y C y + βF T F ) V D = V I + βC T x V u + βC T y V v + βF T V w , (11)

where � is the identity matrix with the same size of matrix C x .

We employ the preconditioned conjugate gradient (PCG) algorithm

to solve the sparse linear equation, due to its linear computational

complexity [39] . In our experiments, we find that 3 to 5 iterations

of the IRLS optimization procedure are enough to estimate the

despeckled image D . 

Sub-problem 2: Updating (u,v,w) Given D , we estimate ( u, v,

w ) by solving the following L regularized least squares: 
0 
in 

u, v ,w 

{∑ 

q 

(
(∂ x D q − u q ) 

2 + (∂ y D q − v q ) 2 + 

(
F A (D ) q − w q 

)2 
)

+ 

λ

β
P (u, v , w ) 

}
, (12)

here P ( u, v, w ) denotes the number of non-zero elements in the

(u 2 + v 2 + w 

2 ) . To minimize Eq. (12) , we first re-formulate P ( u, v,

 ) as a sum of an element-wise term below: 

 (u, v , w ) = # 

{ 

a | u 

2 
a + v 2 a + w 

2 
a � = 0 

} 

= 

∑ 

b 

R (u 

2 
b + v 2 b + w 

2 
b ) , 

here R (u 

2 
b + v 2 b + w 

2 
b ) = 

{
0 , u 

2 
b 

+ v 2 
b 

+ w 

2 
b 

= 0 . 

1 , otherwise . 
(13)

hanks to the re-formulation, we can transform Eq. (12) into a

ew objective function, where each element u q , v q and w q can be

ndividually estimated: 

min 

 q , v q ,w q 

{
(∂ x D q − u q ) 

2 + (∂ y D q − v q ) 2 + 

(
F A (D ) q − w q 

)2 

+ 

λ

β
R (u 

2 
q + v 2 q + w 

2 
q ) 

}
. (14)

ow, we can quickly obtain its closed-form solution of Eq. (14) un-

er the condition below (see the APPENDIX A for the proof): 

(u q , v q , w q ) = 

{
(∂ x D q , ∂ y D q , F A (D ) q ) , GAP (D ) q > 

λ
β

. 

(0 , 0 , 0) , otherwise. 
(15)

.4. Why it works 

Here, we provide more analysis on the proposed L 0 minimiza-

ion. Algorithm 1 summaries the whole optimization process. In

lgorithm 1 Ultrasound speckle reduction via L 0 minimization. 

equire: The input ultrasound image I, smoothness λ, the band-

width ϕ, scale range 
, similarity parameters β0 , βmax and in-

creasing rate k . 

1: Initialization: D 

0 ← I, β = β0 

2: repeat 

3: with the estimated D , compute u, v , w using Eq. 15, 

4: for iter = 1 to 5 do 

5: for all scale s ∈ 
 do 

6: compute F A using Eq. 1, 

7: compute the edge strength 
γ using Eq. 3 

8: end for 

9: select the optimal scale with maximal 
γ value, 

10: compute f p with optimal scale using Eq. 8, 

11: update D by solving the sparse linear equation (Eq. 11), 

12: end for 

13: β = kβ
14: until β ≥ βmax 

15: return despeckled image D 

ur solver, we first introduce three auxiliary variables ( u, v, w ) and

nitialize them as: (u, v , w ) = (∂ x D, ∂ y D, F A (D )) . Afterwards, two

ub-problems are alternatively updated as following: 

(a) For each pixel p of the current despeckled result D , we check

hether GAP (D ) p < = 

λ
β

is satisfied. If yes, we set u p = 0 , v p = 0 ,

nd w p = 0 , otherwise, the value is unchanged, as described in

q. (15) . 

(b) We transfer the changes happened in ( u, v, w ) to ( ∂ x D , ∂ y D,

A ( D )) by solving Eq. (7) , so that small values in the GAP ( D ) are

lso largely reduced, or even set to 0. Meanwhile, the remaining

AP ( D ) values are unaltered. 
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Fig. 3. Comparison of speckle reduction on an ultrasound image using different L 0 model. (a) Original image. Despeckled result produced by (b) L 0 gradient minimization [11] , 

(c) L 0 FA minimization, and (d) our method. 
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When small GAP ( D ) are progressively reduced to 0, their ∂ x D ,

 y D and FA ( D ) values also become 0, leading to the decrease of

 ( D ). Hence, our solver can gradually minimize the proposed L 0 
inimization. Once there is no pixel whose GAP value is below

λ
β

in the current despeckled result D , our method reaches the

onvergence state. Similar to [17] , our method with three auxiliary

plitting variables also converges after 10–20 iterations. Since

eatures have larger GAP values than speckle noise, ∂ x D and ∂ y D
f speckle noise tend to be 0 as the iteration number increases,

eading to the removal of speckle noise. At the same time, the val-

es of ( ∂ x D , ∂ y D, FA ( D )) at features are almost unchanged, so that

ur method can well protect features. Furthermore, our method is

lso capable to preserve low contrast features, since FA is invariant

o changes of brightness or contrast for feature detection. 

Noted that using only L 0 gradient and only L 0 FA minimization

annot achieve satisfied result for ultrasound speckle reduction.

ince gradient information is unable to separate features from

peckle noise in ultrasound images, the L 0 gradient minimization

11] gives similar penalties on features and speckle noise, leading

o feature blurring (see Fig. 3 (b)). Although FA has the capability

o distinguish speckle noise and features, L 0 FA minimization also

annot effectively remove speckle noise. The reason is that setting

he FA values of the speckle noise to 0 cannot alter the intensity

alue of the noise. Hence, the noise cannot be eliminated (see

ig. 3 (c)). In Fig. 3 , we compare the despeckled results by the L 0 
radient minimization [11] , L 0 FA minimization, and our method.

s can been seen, L 0 gradient minimization removes many fea-

ures, when suppressing the speckle noise in the ultrasound image,

ince those removed features have smaller gradient values than

ome speckle noise. The despeckled result by L 0 FA minimization

s almost the same as the original ultrasound image. Owing to

he advantages of GAP , our method can efficiently eliminate the

peckle noise and preserve features, as shown in Fig. 3 (d). 

. Experiments 

We evaluated the performance of the proposed method on

any synthetic and clinical ultrasound images and compared its

esults with state-of-the-art despeckling methods: (1) speckle re-

ucing anisotropic diffusion [19] (denoted as SRAD), (2) optimized

ayesian non-local means [7] (denoted as OBNLM), (3) anisotropic

iffusion guided by Log-Gabor filters [2] (denoted as ADLG), (4)

on-local mean filter combined with local statistics [8] (denoted

s NLMLS), (5) fast feature-preserving speckle reduction via phase
ongruency [14] (denoted as FPC), (6) nonlocal total-variation-

ased speckle filtering [20] (denoted as BNLTV), and (7) learning

eep CNN Denoiser Prior [21] (denoted as LDCNN). To produce

heir results, we obtain their implementations from the public

omain for SRAD, OBNLM, ADLG, and the authors for the FPC;

or the NLMLS, we strictly follow the implementation details to

mplement it by ourselves; for BNLTV and LDCNN, we obtained

he results directly from the authors. Moreover, we generate

umerous results by exhaustively trying and fine-tuning many

ifferent parameters for all the compared methods, and select the

est despeckled result for display. 

Our method includes six parameters, namely, the smoothness

, the bandwidth ϕ, the scale range 
, the similarity parameters

0 , βmax and the increasing rate k . In the all experiments, as sug-

ested in [14,22] , we set ϕ as 1.58; β0 and βmax are empirically

et as: β0 = 4 λ, βmax = 1 e 5 , respectively, while the scale range

is empirically fixed as [1, 20]. The increasing rate k balances 

he time efficiency and despeckling performance, and its value

s in the range of [1.2, 2]. λ is a critical parameter to adjust the

erformance of feature preservation, and we set its value in [1e −3,

e −1] in all the experiments. A larger λ is required for an input

mage with a high noise level. Our Matlab implementation takes

bout 5 s to process a 300 ∗255 ultrasound image. 

.1. Synthetic images 

For the synthetic images, the ground truth images are avail-

ble, and thus we can quantitatively evaluate and compare the

erformance of different despeckling methods by using three

etrics: peak signal-to-noise ratio ( PSNR ) [40] , Pratt’s figure of

erit ( FOM ) [19] and mean structural similarity ( MSSIM ) [41] .

SNR [40] describes the ratio between the ground truth image G

nd the despeckled image D : 

 SNR = 10 · log 10 

M · N ∑ M−1 
i =0 

∑ N−1 
j=0 [ D (i, j) − G (i, j)] 

, (16) 

here [ M, N ] is the size of the despeckled image D . The higher

SNR is, the closer D is to the ground truth G. FOM [19] is used to

ompare the performance of edge preservation: 

 OM = 

1 

max { E D , E G } 
E D ∑ 

i =1 

1 

1 + d 2 
i 
ρ

, (17) 

here E D and E G are the number of edge pixels in the despeckled

utput D and the ground truth G , respectively. The d is the
i 
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Fig. 4. (a) synthetic speckled image ( σ 2 = 0 . 15 ). Despeckled result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , (g) BNLTV [20] , (h) LDCNN [21] , 

and (i) our method. 

Table 1 

Quantitative evaluation of different despeckled results. 

SRAD OBNLM ADLG NLMLS FPC BNLTV LDCNN Ours 

PSNR 22.85 23.54 23.61 24.44 23.72 26.33 25.22 27.09 

FOM 0.3972 0.5126 0.5291 0.5739 0.5900 0.4730 0.6046 0.6333 

MSSIM 0.8740 0.9155 0.9235 0.9484 0.9554 0.9576 0.9635 0.9729 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparison of PSNR values for despeckled results using syn- 

thetic noise on Fig. 2 (a) at different noise levels. 

σ 2 = 0 . 2 σ 2 = 0 . 25 σ 2 = 0 . 3 σ 2 = 0 . 35 

SRAD 21.34 20.10 19.18 18.42 

OBNLM 18.97 18.34 17.77 17.34 

ADLG 20.83 19.74 18.88 18.17 

NLMLS 23.38 22.35 21.68 20.97 

FPC 22.30 21.21 20.33 19.46 

BNLTV 25.85 24.40 23.43 22.52 

LDCNN 24.62 23.40 22.51 21.76 

Ours 26.87 25.90 24.72 23.91 
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1 http://www.ultrasoundcases.info 
Euclidean distance between the i th edge pixel in D and its nearest

edge pixel in G . The ρ is a constant, and its value is usually set

to be 1/9. FOM takes value in [0, 1], with unity for the best edge

preservation. 

MSSIM [41] adapts the human visual system to the structural

information in a scene. It computes the image similarity between

D and G by taking into account three measures: structure, contrast

and luminance, and the formulation is 

MSSIM(D, G ) = 

1 

T 

T ∑ 

i =1 

SSIM((D ) i , (G ) i ) , (18)

where T is the number of pixels in D and G , and SSIM is: 

SSIM(D, G ) = [ S(D, G )] W 1 × [ C(D, G )] W 2 × [ L (D, G )] W 3 , (19)

where S ( D, G ), C ( D, G ) and L ( D, G ) are the luminance, contrast and

structure similarity function, respectively. W 1 , W 2 and W 3 are their

weights, and we set their values using the default one reported

in [41] . The MSSIM value varies from 0 to 1, and a higher value

indicates the less difference between D and G . The theoretical

speckle noise model [7] is based on the equation: Y = X + � ∗ X,

where X and Y are the noise-free and synthesized images with

speckle noise, respectively, and � is the zero-mean Gaussian

noise with variance σ 2 : �∼ N (0, σ 2 ). We employed the above

noise model on the clean image ( Fig. 2 (a)) to produce a synthetic

speckled image ( Fig. 4 (a)) with noise variance σ 2 = 0 . 15 . The clean

image ( Fig. 2 (a)) consists of shape objects with different sizes

and intensity contrasts to the background. Fig. 4 (b)–(g) show

despeckled results of different ultrasound speckle reduction algo-

rithms. It is observed that all the other methods blur the shape

boundaries to some extent, especially for the low contrast shapes

in the last row. Thanks to the less sensitivity of phase information

to intensity contrasts, the proposed approach achieves the best

performance in preserving edges of all those shape objects while

removing the speckle noise. 

Table 1 reports quantitative values of all the three met-

rics among different despeckling methods. Clearly, our method

achieves outperformed performance for all the three metrics

(PSNR: 27.09, FOM: 0.6333, MSSIM: 0.9729), compared to other

techniques. The higher PSNR value shows that our result is much

closer to the ground truth for the pixel intensities. The largest

FOM value indicates that our approach outperforms all the other

methods on edge preservation. In the meantime, the superior

performance with respect to the MSSIM value implies that our

despeckled result is the most similar to the raw image in terms

of structure, luminance and contrast. Furthermore, we test our
ethod on another four noise levels σ 2 = { 0 . 2 , 0 . 25 , 0 . 3 , 0 . 35 } on

he same clean image (see Fig. 2 (a)), and compare despeckled

esults of different methods. Table 2 summaries the resulting

SNR values over all the methods, indicating that our method

onsistently has better performance over others. 

.2. Clinical images 

We further verify the proposed method on many clinical

mages obtained from a public ultrasound dataset 1 . Compared

o the conference version [23] , more new clinical images are

ncluded for comparisons to further verify the effectiveness of the

roposed method. We show the results of six typical images from

igs. 5 to 10 and more results can be found in the supplementary

aterial. Figs. 5 –Fig. 7 demonstrate the despeckling results of

hree different ultrasound images. As shown in those blown-up

iews, our method effectively removes speckle noise while clearly

reserving boundaries of the main tissues and small regions, but

ther methods heavily blur those boundaries and even smooth out

dges of small regions. Moreover, despeckling results of another

hree ultrasound images are shown in Figs. 8 –10 , in which the top

ow illustrates despeckled results while the bottom row shows

he intensity profiles of a typical vertical or horizontal line. The

especkling results visually demonstrate the proposed L 0 min-

mization achieves best performance in maintaining features of

he input ultrasound images among all the compared despeckling

echniques. The intensity profiles further demonstrate that our

ethod does not alter peak values of prominent features in the

riginal image, while suppressing intensity fluctuates caused by

http://www.ultrasoundcases.info
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Fig. 5. Comparison of speckle reduction on an ultrasound image. (a) Original image. Despeckled result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) 

FPC [14] , (g) BNLTV [20] , (h) LDCNN [21] , and (i) our method. 

Fig. 6. Comparison of speckle reduction on an ultrasound image. (a) Original image. Despeckled result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) 

FPC [14] , (g) BNLTV [20] , (h) LDCNN [21] , and (i) our method. 

Fig. 7. Comparison of speckle reduction on an ultrasound image with a mobile gallstone. (a) Original image. Despeckled result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG 

[2] , (e) NLMLS [8] , (f) FPC [14] , (g) BNLTV [20] , (h) LDCNN [21] , and (i) our method. 

Fig. 8. Comparison of speckle reduction on a hypoechoic liver ultrasound image with metastatic melanoma, as well as the evaluation of the feature contrast preservation. 

(a) Original image with the intensity profile (blue curve) of a vertical line. Despeckled result with its intensity profile (red curve) by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG 

[2] , (e) NLMLS [8] , (f) FPC [14] , (g) BNLTV [20] , (h) LDCNN [21] , and (i) our method (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 
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peckle noise. In contrast, other methods are all obviously reduce

eak values of those features to some extent. 

Fig. 11 presents our despeckling results on more clinical images.

rom the results, we can observe that our method can effectively

emove speckle noise and maintain features at the same time.

n addition, many originally blurry features are much clearer in

ur despeckled results. We also invite some clinical experts to

omment on our results, and they conclude that our results of

peckle reduction improve the image quality and well protect
he structure details, which can provide helps for their clinical

omputer-aided diagnosis systems. 

.3. Effects of parameters 

As discussed in the second paragraph of the Section 4 , Our

ethod has two parameters to be turned for different input ul-

rasound images: k and λ. k controls the increasing speed starting

rom β to βmax , and thus more iterations are required in our
0 
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Fig. 9. Comparison of speckle reduction on an ultrasound image, as well as the evaluation of the feature contrast preservation. (a) Original image with the intensity profile 

(blue curve) of a vertical line. Despeckled result with its intensity profile (red curve) by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , (g) BNLTV [20] , 

(h) LDCNN [21] , and (i) our method. By observing the intensity profiles of the vertical line, we can find that our method has superior performance of maintaining feature 

intensity contrasts (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 10. Comparison of speckle reduction on an ultrasound image, as well as the evaluation of the feature contrast preservation. (a) Original image with the intensity profile 

(blue curve) of a vertical line. Despeckled result with its intensity profile (red curve) by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , (g) BNLTV [20] , 

(h) LDCNN [21] , and (i) our method. By observing the intensity profiles of the vertical line, we can find that our method has superior performance of maintaining feature 

intensity contrasts (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 11. More despeckled results produced by our method. Top row: inputs. Bottom row: our results. It is observed that our method can consistently maintain features in 

the inputs of different tissue regions and effectively remove speckle noise. 
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optimization for a smaller k . However, the results of the proposed

methods are not that sensitive to the change of k . A small k tends

to blur some edges during exceeding iterations, while a large k

may preserve some noise around edges, due to a fast optimization

process in our method. In Fig. 12 , we show the effect of changing

k on the despeckled result of an synthetic image (see Fig. 12 (b)).

When taking a closer look at the results, we can notice tiny

changes cause by the adjustment of k , which is also proved by the

PSNR values for different despeckled results. 

On the other hand, the critical parameter λ is allowed to be ad-

justed to decide the speckle noise removal ability of our method.

While a small λ is insufficient to remove the most of speckle

noise, a large λ tend to more blur some features. Fig. 13 presents

the effect of changing λ on the despeckled result of Fig. 12 (b).

It is observed that when λ is small, the despeckled result is not
 s  
atisfactory. With the increase of λ, the speckle reduction ability

f our method is enhanced accompanying by blurring of some

eatures, leading to a smaller PSNR values (see Fig. 12 (j)). With a

roper λ, our method can effectively eliminate speckle noise and

reserve features at the same time. 

.4. Application to ultrasound image segmentation 

Afterwards, we demonstrate the proposed method can be em-

loyed as a prerequisite step in intelligent ultrasound processing

ystems by taking the image segmentation as an example. Breast

umor segmentation plays a vital role in the computer-aided diag-

osis (CAD) system, since the clinical benign and malignant breast

esion classification relies on the shape or contour features from

egmented lesions [2] . In Fig. 14 , we present the segmentation
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Fig. 12. Effect of parameters k . (a) Clean image. (b) synthetic image. (c)-(j) show the despeckled results by tuning k and the corresponding PSNR value. 

Fig. 13. Effect of parameters λ. (a) Clean image. (b) synthetic image. (c)-(j) show the despeckled results with different λ values and the corresponding PSNR value. 

Fig. 14. Breast tumor segmentation accuracy comparison on different despeckled results. (a) The original ultrasound image and its segmentation result. Despeckled result 

and its segmentation result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , (g)BNLTV [20] , (h) LDCNN [21] , and (i) our method. Blue color: the 

ground truth delineated by clinicians; Red color: the reached segmentation result (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.). 



58 L. Zhu et al. / Neurocomputing 294 (2018) 48–60 

Fig. 15. Evaluation of the lesion boundary preservation in despeckled results of an input ultrasound image with a lesion in the right breast. (a) the original ultrasound 

image, and the breast lesion boundary delineated by the clinical doctor; The despeckled result by (b) SRAD [19] , (c) OBNLM [7] , (d) ADLG [2] , (e) NLMLS [8] , (f) FPC [14] , 

(g)BNLTV [20] , (h) LDCNN [21] , and (i) our method, and the edge maps (with MRD value) obtained by running the Canny’s detector. In edge maps of (b)-(i), rectangles at 

the bottom-left corner show the corresponding mean radial distance ( MRD ) results produced from different despeckled results. 

Table 3 

Mean AC, HD and HM values for different segmentation results on 10 ultrasound images. 

Input SRAD OBNLM ADLG NLMLS FPC BNLTV LDCNN Ours 

AC (%) 63.46 91.00 93.44 94.03 94.25 94.47 95.48 96.18 97.71 

HD 30.4451 10.8214 6.5745 4.4619 5.1225 7.8611 11.2947 11.2403 2.8892 

HM 12.785 2.4559 1.8404 1.7014 1.5687 1.3979 1.1842 1.4421 0.6356 

Table 4 

Median AC, HD and HM values for different segmentation results on 10 ultrasound images. 

Input SRAD OBNLM ADLG NLMLS FPC BNLTV LDCNN Ours 

AC (%) 72.97 94.29 94.85 95.66 95.67 95.47 96.18 95.02 97.75 

HD 37.5402 10.9965 8.3353 8.0297 7.5421 6.9182 6.3796 9.37 2.7319 

HM 11.6133 2.116 1.9286 1.5741 1.5771 1.6422 1.3955 1.8183 0.8835 
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s  
results of the breast tumor on the speckled image and despeckled

images by employing a famous level set based segmentation

technique [26] . The red curve is the obtained segmentation result

and the blue curve is the manual result delineated by a clinical

doctor, which is usually regarded as the ground truth [42] . As

can be seen, the segmentation performance on the original image

is pretty poor, due to the adverse effect from the speckle noise.

Carrying out the segmentation on those despeckled image, we

find that the accuracy has been significantly improved. Among

all despeckled images, the segmentation result on our despeckled

result is closest to the ground truth. Since some parts of the

breast tumor contour are blurred in other despeckled results, their

segmentation contours leaks out the blurred edges. 

In addition, three metrics [26] : a combined accuracy metric

of true and false positive rate( AC ), Hausdorff distance ( HD ) and

Hausdoff mean( HM ), are adopted for quantitative comparison. The

region based metric AC evaluates the segmentation accuracy by

measuring the overlapping rate of manual and obtained segmen-

tation regions, while HD and HM computes the distance of the

boundaries between the manual and obtained segmentation re-

sults. Hence, a better segmentation result shall have higher AC , as

well as lower HD and HM . Table 3 summaries mean values of three

metrics for different segmentation results of 10 ultrasound images.

Obviously, our result achieves the largest AC value (97.71%), the

smallest HD value (2.8892) and the smallest HM value (0.6356)

among all despeckled results. Moreover, we report the median

three metric values for 10 segmentation results on despeckled

results produced by different methods in Table 4 . From the results,

we can easily observe that segmentations on our despeckled re-

sults also achieve best results among all the segmentation results. 

4.5. Application to lesion boundary preservation 

Breast ultrasound (BUS) is a vital adjunct of the mammography

for patients with palpable mass or inconclusive mammograms.

Computer-aided diagnosis systems usually extract the shape or
ontour of the breast lesions to identify them as benign or ma-

ignant in BUS images [4] , but the speckle noise in BUS images

omplicates this task. When applying a despeckling procedure as

 pre-processing step, we can easily pick up the lesion boundary,

ue to the removal of speckle noise, and the performance thus

epends on the lesion boundary preservation of the despeckling

echnique. To quantitatively evaluate the edge preservation in

linical ultrasound images, we use the mean radial distance ( MRD )

etric [2] , and compare their values of different techniques to

urther verify the effectiveness of our method. Let E 1 denotes the

et of points on the breast lesion boundary delineated by the

linical doctor, and E 2 represents the obtained edge map by the

anny detector. Then, MRD is defined as: 

RD = 

1 

τ

∑ 

p i ∈ E 1 
|| p i − r j || , (20)

here r j is the point in the E 2 , which has the minimum distance

o p i in the same radial direction from the lesion centroid, and

hus the smaller MRD value implies that the despeckling method

as a better edge preservation after speckle reduction. 

In the top row of Fig. 15 , we compare the despeckled result

f a breast ultrasound image. As can be seen, our method can

fficiently suppress the speckle noise and best preserve the breast

esion, but the price paid for removing speckle noise is the blur-

ing of the lesion in other despeckling techniques. Moreover, we

mploy the MRD to quantitatively evaluate the boundary preser-

ation of the breast lesion, and the MRD value is presented in the

ottom-left rectangle of Fig. 15 . Obviously, our method reaches the

mallest MRD value with 1.1467 pixels, which indicates that the

especkled image by our method best preserves the breast lesion’s

oundary among all despeckled resultant images. 

. Conclusion 

We presented a novel L 0 minimization framework tailored for

peckle reduction in ultrasound images. First, we formulated a
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parse prior of a new measure GAP , which takes both the gradient

nd phase information into consideration. With the prior, we

roposed a global minimization to seek for the L 0 sparsity of the

AP . In addition, we proposed an efficient and robust solver, which

ransfers the intractable L 0 minimization into several optimiza-

ion steps with closed-form solutions. Experiments in synthetic

nd clinical ultrasound images demonstrate that our approach

utperforms state-of-the-art methods for speckle reduction. The

roposed method has great potential to be applied to many intel-

igent ultrasound systems. In the future, we will accelerate our L 0 
inimization using GPU, and also test our despeckling method on

ore clinical ultrasound images and applications. 
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ppendix A 

Here, we proof that the closed-form solution of Eq. (14) is

chieved under the condition in Eq. (15) . To simplify the ex-

ression, we introduce J q to denote the energy function at the

articular pixel q in Eq. (14) : 

 q = (∂ x D q − u q ) 
2 + (∂ y D q − v q ) 2 + 

(
F A (D ) q − w q 

)2 

+ 

λ

β
R (u 

2 
q + v 2 q + w 

2 
q ) . (A.1) 

f (u q , v q , w q ) = (0 , 0 , 0) , R (u 2 q + v 2 q + w 

2 
q ) = 0 . Then, J q becomes: 

 q = (∂ x D q − 0) 2 + (∂ y D q − 0) 2 + 

(
F A (D ) q − 0 

)2 

= ∂ x D 

2 
q + ∂ y D 

2 
q + F A (D ) 2 q 

= GAP (D ) q . (A.2) 

therwise, R (u 2 q + v 2 q + w 

2 
q ) = 1 , so that J q can be computed as: 

 q = (∂ x D q − u q ) 
2 + (∂ y D q − v q ) 2 + 

(
F A (D ) q − w q 

)2 + 

λ

β
. (A.3) 

Hence, when (u q , v q , w q ) = (∂ x D q , ∂ y D q , F A (D ) p ) , J p reaches the

inimal value λ
β

. 

By comparing the minimal values of Eq. (A.2) and Eq. (A.3) , we

iscuss the optimization of J q in the following two conditions: 

Case 1: GAP (D ) q < 

λ
β

. J q achieves the minimum value ( GAP ( D ) q )

nder the condition (u q , v q , w q ) = (0 , 0 , 0) . 

Case 2: GAP (D ) q > = 

λ
β

. when (u q , v q , w q ) = (∂ x D q , ∂ y D q ,

 A (D ) q ) , J q achieves the minimal value λ
β

. 

Hence, J q reaches the closed-form solution under the following

ondition: 

(u q , v q , w q ) = 

{
(∂ x D q , ∂ y D q , F A (D ) q ) , GAP (D ) q > 

λ
β (A.4) 
(0 , 0 , 0) , otherwise. 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.neucom.2018.03.009 
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