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Abstract— Diabetic retinopathy (DR) and diabetic mac-
ular edema (DME) are the leading causes of permanent
blindness in the working-age population. Automatic grading
of DR and DME helps ophthalmologists design tailored
treatments to patients, thus is of vital importance in the clin-
ical practice. However, prior works either grade DR or DME,
and ignore the correlation between DR and its complication,
i.e., DME. Moreover, the location information, e.g., macula
and soft hard exhaustannotations,are widely used as a prior
for grading. Such annotations are costly to obtain, hence it
is desirable to develop automatic grading methods with only
image-level supervision. In this article, we present a novel
cross-disease attention network (CANet) to jointly grade
DR and DME by exploring the internal relationship between
the diseases with only image-level supervision. Our key
contributions include the disease-specific attention module
to selectively learn useful features for individual diseases,
and the disease-dependent attention module to further cap-
ture the internal relationship between the two diseases. We
integrate these two attention modules in a deep network to
produce disease-specific and disease-dependent features,
and to maximize the overall performance jointly for grad-
ing DR and DME. We evaluate our network on two public
benchmark datasets, i.e., ISBI 2018 IDRiD challenge dataset
and Messidor dataset. Our method achieves the best result
on the ISBI 2018 IDRiD challenge dataset and outperforms
other methods on the Messidor dataset. Our code is publicly
available at https://github.com/xmengli999/CANet.

Index Terms— Diabetic retinopathy, diabetic macular
edema, joint grading, attention mechanism.

I. INTRODUCTION

D IABETIC Retinopathy (DR) is a consequence of
microvascular retinal changes triggered by diabetes. It is
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Fig. 1. Early pathological signs of DR, e.g., soft exudates, hard exudates,
microaneurysms, and hemorrhage, in a diabetic retinopathy image. Early
pathological signs of DME is determined by the shortest distance of
macula and hard exudates.

the most common leading cause of blindness and visual
disability in the working-age population worldwide [1]. Struc-
tures such as microaneurysms, hemorrhages, hard exudates,
and soft exudates are closely associated with DR and the
presence of each of the aforementioned anomaly determines
the grade of DR in the patient, as shown in Figure 1. Diabetic
Macular Edema (DME) is a complication associated with DR,
which is normally due to the accumulation of fluid leaks from
blood vessels in the macula region or retinal thickening that
occurs at any stage of DR [2]. The grading of the severity of
DME is based on the shortest distances of the hard exudates to
the macula. The closer the exudate is to the macular, the more
the risk increases; see examples in Figure 2. The most effective
treatment for DR and DME is at their early stage, for example,
by laser photocoagulation. Therefore, in clinical practice, it is
important to classify and stage the severity of DR and DME,
so that DR/DME patients can receive tailored treatment at the
early stage, which typically depends on the grading.

Convolutional neural networks (CNNs) have been proven
to be a powerful tool to learn features for DR [3]–[5] and
DME [6], [7] grading. For example, Islam et al. [3] developed
a network to detect early-stage and severity grades of DR with
heavy data augmentation. Zhou et al. [4] presented a multi-
cell multi-task learning framework for DR grading by adopting
the classification and regression losses. Regarding the DME
grading, Ren et al. [6] presented a semi-supervised learning
method with vector quantization. These methods, however,
adopted different deep networks independently for grading
each disease, ignoring the internal relationship between DR
and DME, for example, the DME is the complication of DR.
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Fig. 2. Examples of fundus images with different pathological severity of DR and DME.

Recently, some works began to explore joint grading of
DR and DME [5], [8]. Gulshan et al. [8] employed the
Inception-v3 architecture for DR and DME grading, while
Krause et al. [5] further improved the performance by utilizing
the Inception-v4 architecture. However, these works focused
on the network design and simply regarded the joint grading
task as a multi-label problem, without considering the implicit
relationship between these two diseases. In the medical imag-
ing community, some work [9]–[11] employed multi-task
learning to explore the relationship between different diseases
(tasks). A key factor for the success in multi-task learning is
that the information among different tasks is shared, thereby
promoting the performance of each individual task.

To explore the feature relationship of DR and DME dis-
eases and improve the grading performance for both dis-
eases, it requires an understanding of each disease, and also
the internal relationship between two diseases. To this end,
we present a novel deep network architecture, called cross-
disease attention network (CANet), to selectively leverage the
features learned by the deep convolutional neural network,
and produce disease-specific (within each disease) and disease-
dependent features (between diseases) for joint DR and DME
grading. In particular, we first develop a disease-specific
attention module to select features from the extracted feature
maps for individual disease (i.e., DR & DME). We then present
a disease-dependent attention module to explore the internal
relationship between two diseases by learning a set of attention
weights, such that a larger weight indicates a higher risk of
complication (e.g., DME may lead to worsening DR), and
vice versa. Through the attention mechanism, our network
models the implicit relationship between these two diseases,
and improves the joint grading performance.

In summary, our contributions are three folds:

• We present a novel and effective method, named as cross-
disease attention network (CANet), to jointly model the
relationship between DR and its complication, i.e., DME.
To the best of our knowledge, this is the first work for
joint modeling the disease and its complication for fundus
images.

• We propose the disease-specific attention module to
selectively learn useful features for individual diseases,
and also design an effective disease-dependent attention
module to capture the internal relationship between two
diseases.

• Experiments on the public IDRiD [12] challenge dataset
and the Messidor [13] dataset show that our CANet
method outperforms other methods on grading for both
diseases, and achieves the best performance on the IDRiD
dataset.

II. RELATED WORK

A. Diabetic Retinopathy Grading

Early works on automatic diabetic retinopathy grading were
based on the hand-crafted features to measure the blood ves-
sels and the optic disc, and on counting the presence of abnor-
malities such as microaneurysms, soft exudates, hemorrhages,
and hard exudates, etc. Then the grading was conducted
using these extracted features by different machine learning
methods [14]–[21], e.g., support vector machines (SVM) and
k-nearest neighbor (kNN) and Gaussian mixture model.

In the last few years, deep learning algorithms have become
popular for DR grading [22]–[28]. There are mainly two cat-
egories of deep learning methods for identifying DR severity.
The first category is to use location information of tiny lesions,
e.g., microaneurysms, hemorrhage, to determine DR grading
performance. Van Grinsven et al. [29] sped up model training
by dynamically selecting misclassified negative samples for
hemorrhage detection. Dai et al. [30] proposed a multi-modal
framework by utilizing both expert knowledges from text
reports and color fundus images for microaneurysms detection.
Yang et al. [31] designed a two-stage framework for both
lesion detection and DR grading by using the annotations
of locations including microaneurysms, hemorrhage, and exu-
dates. Lin et al. [32] developed a new framework, where it
first extracted lesion information and then fused it with the
original image for DR grading. Zhou et al. [33] proposed
a collaborative learning method for both lesion segmentation
and DR grading using pixel-level and image-level supervisions
simultaneously.

The second category uses image-level supervision to train a
classification model to distinguish DR grades directly [8], [34],
[35]. Gulshan et al. [8] proposed an inception-V3 network for
DR grading. Gargeya and Leng [34] designed a CNN-based
model for DR severity measurements. Wang et al. [35] used
attention maps to highlight the suspicious regions, and pre-
dicted the disease level accurately based on the whole image as
well as the high-resolution suspicious patches. It is expensive
to annotate the labels on the medical images in a pixel-wise
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Fig. 3. The schematic illustration of the overall cross-disease attention network (CANet). �i and�j denote the disease-specific features for DR and
DME, respectively; �′

i and �′
j denote the refined features with disease-dependent information for DR and DME, respectively; r is the ratio to reduce

the number of feature channels for saving parameters; fc denotes the fully connected layer; The final loss function is the weighted combination of
LDR, L′

DR, LDME, and L′
DME.

manner, hence, we follow the second category to conduct
disease grading with only image-level supervision.

B. Diabetic Macular Edema Grading

Like the DR grading task, grading DME also attracts
much attention in the community [36]. The assessment of the
severity of DME is based on the distances of the exudate to
the macula. The closer the exudate is to the macular, the more
the risk increases. Early works used hand-crafted features
to represent the fundus images [37], [38]. For example,
Akram et al. [37] presented a screening system for DME that
encompassed exudate detection with respect to their position
inside the macular region. The system first extract features
for exudate candidate regions, followed by making a repre-
sentation of those candidate regions. The exact boundaries
were determined using a hybrid of GMM model. However,
the capacity of the hand-crafted features is limited. CNN based
methods [6], [7] have dramatically improved the performance
of DME grading. For example, Ren et al. [6] proposed a
semi-supervised graph-based learning method to grade the
severity of DME. Syed et al. [7] used knowledge of location
information of exudates and maculae to measure the severity of
DME. However, all of these work utilize the location informa-
tion of exudate regions for disease grading. Such annotations
(both lesions masks and grading labels) are difficult to obtain,
in this work, we grade DME with only image-level supervi-
sion. Under the image-level supervision,Al-Bander et al. [39]
proposed a CNN-based method based on foveae and exudates
location for DME screening. However, their method classifies
the DME into two classes, which is simpler than ours.

C. Multi-Task Learning in Medical Imaging Domain

Since jointly grading DR and DME diseases is related
to the multi-task learning, we also review related works in
medical imaging domain [9]–[11], [40], [41] and most of them
are designed for image classification or regression tasks. For
example, Chen et al. [9] trained a classification network for
four tasks on the Age-related Macular Degeneration disease
grading by using the CNN layers to capture common features

then fully connected layers to learn the features for individual
tasks. Liu et al. [11] employed a margin ranking loss to jointly
train the deep network for both lung nodule classification
and attribute score regression tasks. Similarly, Tan et al. [10]
used the multi-level shared features and designed individual
decoders to jointly learn the organ probability map and regress-
ing boundary distance map. In contrast to these works that
jointly do classification and regression tasks, we design a novel
deep network architecture to explore the relationship between
two diseases, and improve the overall grading performance for
both diseases.

III. METHODOLOGY

Figure 3 illustrates the overview of our cross-disease atten-
tion network (CANet) for joint DR and DME grading, con-
sisting of two disease-specific attention modules [Figure 4 (a)]
to learn disease-specific features and two disease-dependent
attention modules [Figure 4 (b)] to explore correlative features
between these two diseases.

A. Cross-Disease Attention Network

As shown in Figure 3, our cross-disease attention network
takes a fundus image as the input and outputs the grading
scores for both DR and DME diseases in an end-to-end
manner. First, we adopt a convolutional neural network, i.e.,
ResNet50 [42] to produce a set of feature maps with different
resolutions. Then, we take the feature maps F ∈ R

C×H×W

with the smallest resolution and highly-semantic information
(the deepest convolutional layer in ResNet50) as the inputs for
the following two disease-specific attention modules, which
learn the disease-specific features F′

i ∈ R
C×H×W and F′

j ∈
R

C×H×W to understand each individual disease. Note that the
feature is the one before the AvgPool and fully connected layer
of original ResNet. It contains high-level semantic information
for DR and DME. Afterwards, we propose disease-dependent
attention modules to explore the internal relationship between
the two correlative diseases and produce the disease-dependent
features for DR and DME, respectively. Finally, we predict the
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grading scores for DR and DME based on the learned disease-
dependent features.

In the following subsections, we will first elaborate the
disease-specific attention module and disease-dependent atten-
tion module in details, and then present the training and testing
strategies of our network for DR and DME grading.

B. Disease-Specific Attention Module

Each disease has its specific characteristics, i.e., DR is
graded by the presence of soft exudates, hard exudates, hemor-
rhage, and microaneurysms while DME is determined by the
shortest distance between the macula and hard exudates [25].
However, the feature maps F ∈ R

C×H×W extracted by
the convolutional neural network only contain the high-level
representations of the input image and it is difficult to capture
the specific characteristics for each disease. In order to learn
the representation of each individual disease, we present a
novel disease-specific attention module to learn the specific
semantic features of DR and DME, receptively.

Figure 4 (a) illustrates the detailed structure of the proposed
disease-specific attention module, which takes the feature
maps F ∈ R

C×H×W as the input and adopts the channel-
wise attention as well as the spatial-wise attention to highlight
the inter-channel and inter-spatial relationship of the features
related to each disease. Specifically, we first squeeze the
spatial information from the shared feature maps F via spatial-
wise average- and max-pooling operations, and obtain two
kinds of global spatial features Fc

avg and Fc
max . Then, we feed

them into a shared MLP (multi-layer perception) to produce
the channel-wise attention maps Ac. The channel-wise atten-
tion maps Ac are described in the following:

Ac = σ [W1 ReLU(W0Fc
avg) + W1 ReLU(W0Fc

max)] (1)

where σ is a sigmoid function to normalize the attention
weights into [0, 1], W0 ∈ R

C/r×C and W1 ∈ R
C×C/r are the

weights of the shared MLP, and r is the ratio to reduce the
number of feature channels for saving the network parameters
and we empirically set it as 0.5. After obtaining the learned
attention weights Ac, we multiply it with the original feature
maps F ∈ R

C×H×W to produce the disease-specific feature
maps Fi :

Fi = Ac ⊗ F (2)

where ⊗ denotes the element-wise multiplication, and the
attention weights Ac are broadcasted along the spatial dimen-
sion. Hence, we can select the disease-specific features and
suppress the features that are irrelevant to the disease along
the feature channels.

To further highlight the disease-specific features across the
spatial domain, we follow [43], [44] and adopt another atten-
tion model, which aggregates the channel-wise information by
applying the max-pooling and avg-pooling operations along
the channel dimension and produces the feature maps Fs

i,avg
and Fs

i,max . Then, we concatenate these two feature maps
together and use another convolutional operation to learn the
2D spatial-wise attention map As:

As = σ(Conv([Fs
i,avg; Fs

i,max ]) (3)

TABLE I
THE DETAILED STRUCTURE OF CROSS-DISEASE ATTENTION

MODULES. “FC” REPRESENTS THE FULLY CONNECTED LAYER;
“CONV” REPRESENTS THE CONVOLUTION OPERATION; “RELU” AND

“SIGMOID” ARE THE RELU AND SIGMOID NON-LINEAR OPERATIONS,
RESPECTIVELY; “CONCAT” REPRESENTS THE CONCATENATION

OPERATION. FOR “CONV”, WE USE PADDING TO KEEP THE SIZE OF

THE FEATURE MAPS. THE SYMBOLS ARE DEFINED IN FIGURE 4

where Conv is a convolution layer and σ denotes the sigmoid
function. Finally, we obtain the disease-specific features F′

i (F′
j

for another disease; see Figure 3) by multiplying the learned
attention weights As with the feature maps Fi to select the
disease-specific features across the spatial dimension:

F′
i = As ⊗ Fi . (4)

Note that the attention weights As are broadcasted along
the channel dimension during the multiplication. In this way,
we can further selectively use the disease-specific features by
enhancing the disease-relevant features and suppressing the
disease-irrelevant features across the spatial domain.

We show the detailed structure of the disease-specific atten-
tion module in Table I. The input and output channel number
of FC 1 and FC 2 in disease-specific module are 2048 × 128
and 128×2048, respectively. We use ReLu activation after the
first fully connected layer in each attention module.

C. Disease-Dependent Attention Module

As the statistics of the grading labels shown in Table II
and Table III, DR and DME have the internal relationship.
On the one hand, the more exudates are, the greater risk
of the macula may have, i.e., severer of DR may lead to
severer DME. On the other hand, the closer of exudates to
the macula, the more risk of presences of pathological DR
signs, i.e., worser of DME may lead to worser DR. Motivated
by this observation, we present the disease-dependent attention
module [see Figure 4 (b)] to capture the internal relationship
between these two diseases.

As shown in Figure 3, this model takes the disease-specific
features of both DR and DME diseases as the inputs, i.e.,
Gi and G j , which are obtained by adopting the average
pooling and fully connection operations on F′

i and F′
j , and

then it learns to produce the disease-dependent features for
DR or DME, respectively. Figure 4 (b) illustrates the detailed
structures of the proposed disease-dependent attention module
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Fig. 4. The architectures of different attention modules. The disease-specific attention module (a) exploits both the inter-channel and inter-spatial
relationship of features, while the disease-dependent module (b) explores and aggregates the informative inter-channel features from the other
branch; (b) shows an example of disease-dependent attention module used for DME grading; �c denotes the spatial-wise attention map and �s
denotes the channel-wise attention map; r is the ratio to reduce the number of feature channels for saving parameters. The actual details of the
CANet topology can be found in Table I.

TABLE II
THE STATISTICS OF THE LABELS IN THE MESSIDOR DATASET. THE

FIRST NUMBER IS THE COUNTS OF LABELS AND THE

SECOND ONE IS THE RELATIVE VALUE

TABLE III
THE STATISTICS OF THE LABELS IN THE IDRID DATASET. THE FIRST

NUMBER IS THE COUNTS OF LABELS AND THE SECOND

ONE IS THE RELATIVE VALUE

used for DME grading, which has the similar structures to the
attention model used for DR grading.

Specifically, given the feature maps Gi of DR disease,
we first employ a MLP and a sigmoid function to learn a
set of attention weights AD R , and then multiply these weights
with the input feature maps Gi to select the useful features,
which helps to identify the DME disease. After that, we add
the selected feature maps with the specific features of DME
disease G j in an element-wise manner (⊕) to generate the
disease-dependent features of DME G′

j :

AD R = σ [WD R
1 ReLU(WD R

0 (Gi ))] (5)

G′
j = G j ⊕ AD R ⊗ Gi . (6)

Hence, the network is able to capture the correlation
between the DR and DME diseases and improves the overall
grading performance for both DR and DME diseases. The
detailed structure of disease-dependent attention module is
shown in Table I. The input and output channel number of
FC 1 and FC 2 are 1024 × 64 and 64 × 1024, respectively.
We use ReLu activation after the first fully connected layer in
the attention module.

D. Network Architecture

We adopted ResNet50 as the backbone network to extract
features, followed by a dropout layer with the drop rate of 0.3,
and employed two disease-specific attention modules to learn
disease-specific features. We employed two loss functions, i.e.,
L′

D R and L′
DM E , to learn disease-specific features, and another

two loss functions, i.e., LD R and LDM E , for the final DR and
DME grading:

L = LD R + LDM E + λ(L′
D R + L′

DM E ), (7)

where L′
D R and L′

DM E denote the cross-entropy loss for
DR-specific and DME-specific feature learning, respectively;
LD R and LDM E denotes the loss function for the DR and
DME grading. LD R is a binary cross-entropy loss on the
Messidor dataset and a 5-class cross-entropy loss on the IDRiD
dataset. LDM E is a three-class cross-entropy loss on both
Messidor and IDRiD dataset.

L(y, ŷ) = − 1

N

N∑

i=1

M∑

c=1

yc
i log ŷi

c (8)

where ŷi
c denotes the probability of voxel i belongs to

class/grade c, and yc
i indicates the ground truth label for
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retinal image i . M is three for DME grading and two or five
for DR grading (two in the Messidor dataset and five in
the IDRiD dataset). Taking DR as an example, we directly
apply a fully connected layer on DR-specific features Gi

(batch size × 1024) for classification. The kernel size of
fully connected layer is 1024 × 2 for Messidor dataset and
1024 × 5 for IDRiD dataset. λ is the weight in the loss
function. When λ = 0.0, the network is optimized by the
refined DR and DME features that include both disease-
specific and disease-dependent information. As λ increasing,
the framework gives more importance to the disease-specific
feature learning. We analyze the effects of different λ in the
experiment part, and we empirically set λ as 0.25.

E. Training and Testing Strategies

We normalized the training images and resize images to
350 × 350 resolution. For data augmentation, we randomly
scaled and cropped the images into the patches with a size
of 224 × 224. Random horizontal flip and vertical flip were
also used to augment the training data. We optimized the
network with Adam optimizer [45]. The initial learning rate
was 0.0003 and we decayed the learning rate with a cosine
annealing for each batch [46]. We trained the network for
1000 epochs and the batch size is 40. During the training
process, we feed the samples of DR and DMR in a random
order. The whole framework was built on PyTorch [47] with
Titan Xp GPU. The network has 29 M trainable parameters.
The training time of the network was five hours and the
inference time was 0.02 seconds per image.

To test the grading result, we only used the prediction score
after the refined DR and DME features, which include the
disease-dependent information. We selected the class with the
maximum prediction value in DR and DME, respectively. Dur-
ing inference, we did not use any post-processing operations
and model ensemble techniques.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate the effectiveness of our method by comparing
it against existing works on Messidor dataset [13]1 and
2018 ISBI IDRiD challenge dataset [12]2. To the best of
our knowledge, these two datasets are the only two public
datasets with both DR and DME severity grading annotations.

1) Messidor Dataset: This dataset has 1200 eye fundus
color numerical images of the posterior pole acquired from
three ophthalmologic departments. For each image in the
dataset, its grading annotations of DR and DME are provided
by the medical experts to measure the retinopathy grade and
risk of macular edema. Specifically, DR is graded into four
classes by the severity scale. Given the fact in the DR screen-
ing that the difference between normal images and images of
stage 1 is the most difficult task for both the CAD systems and
clinical experts, Sánchez et al. [48] grouped stages 0 and 1 of
the Messidor dataset as referable images and combined stages
2 and 3 as non-referable in their screening work. This two-
class setting has been widely used in the existing DR screening

1http://www.adcis.net/en/third-party/messidor/
2https://idrid.grand-challenge.org/Grading/

methods [35], [49], so that we conducted binary classification
for DR grading in the Messidor dataset. To fairly compare
with previous works [35], [49], [50], we use 10-fold cross
validation on the entire dataset. DME is annotated based on
the shortest distance d between the hard exudates location and
the macula. The severity of DME is graded to 0 (No visible
hard exudate), 1 ( d > 1 papilla diameter), 2 ( d <= 1 papilla
diameter). The statistics of the DR and DME labels in the
Messidor dataset is shown in Table II.

2) IDRiD Dataset: We employed the ISBI 2018 IDRiD sub-
challenge 2 dataset. This dataset includes 516 images with a
variety of pathological conditions of DR and DME, consisting
of 413 training images and 103 test images. In the IDRiD
dataset, each image contains both DR and DME severity grad-
ing labels. DR grade is annotated into five classes according to
the severity scale, and we perform 5 class classification for DR.
DME is annotated based on the shortest distance d between the
hard exudates location and the macula. The annotation criteria
of DME grading is the same as that in the IDRiD dataset.
The statistics of the labels in the IDRiD dataset is shown in
Table III. The detailed grading criterion for the IDRiD dataset
can be found in the provided dataset websites. Note that we
report 10-fold cross validation results for the Messidor dataset
and use train & test sets split by the challenge organizers for
the IDRiD dataset.

B. Evaluation Metrics

To measure the joint grading performance, we employ the
IDRiD challenge evaluation metric “Joint Accuracy” (Joint
Ac). The definition of Joint Ac is: If the prediction matches
both DR and DME ground-truth label, then it is counted as
one, else zero. The total number of true instances is divided
by a total number of images to get the final result. We use
Joint Ac to select our final model. For the Messidor dataset,
we also report the accuracy (Ac), AUC, precision (Pre), recall
(Rec), F1-score (F1) for each disease.

For the 2018 ISBI IDRiD dataset, we follow the challenge
description and use the challenge evaluation metric (“Joint
Ac”) for comparison.

C. Analysis of Network Design

1) Compare With Baselines: We first compare our method
with two baselines, i.e., “Individual training” and “Joint train-
ing” on the Messidor dataset. “Individual training (DR)” and
“Individual training (DME)” indicates that we trained two
individual ResNet50 networks for DR and DME grading,
respectively. The “Joint training” denotes that we employed
a ResNet50 network for shared feature extraction and two
individual fully connected layers for DR and DME grading,
respectively.

Table IV reports the 10-fold cross validation results of
accuracy, AUC, precision, recall, F1-score for DR and DME
respectively, as well as Joint Ac. It is observed that “Individ-
ual training (DR)” and “Individual training (DME)” achieve
89.5% AUC and 89.1% AUC for DR and DME, respectively.
“Joint training” improves the individual training to 94.2%
AUC and 90.5% AUC for DR and DME, respectively. Notably,
our method (CANet) with the same backbone (ResNet50) and
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TABLE IV
QUANTITATIVE RESULTS ON THE MESSIDOR DATASET. THE REPORTED RESULTS ARE THE MEAN VALUES OF 10-FOLD CROSS VALIDATION. AC,

PRE, REC, AND F1 DENOTE ACCURACY, PRECISION, RECALL, AND F1-SCORE, RESPECTIVELY (UNIT: %).

training strategies improves the performance over these two
baselines, with 96.3% AUC (DR) and 92.4% AUC (DME).
The results show that the effectiveness of our method com-
pared with these two baselines.

From the listed model parameters in Table IV, we can see
that our method has more parameters (29.03 M), compared
with the Joint training (23.52 M). To validate the effectiveness
of our design under the same model complexity, we increase
the parameters of “joint training” to 29.04 M by adding
several standard components before classification on “joint
training”. These components include a convolutional layer
with kernel size 2048×300×3×3, batch normalization layer
and ReLU activation. secondWe also implemented another
complex joint training baseline, i.e., “Joint training (com-
plex_v2)” in Table IV. This architecture is implemented by
adding three convolutional layers on “Joint training” baseline.
Specifically, the convolutional layer has the filter shapes of
2048 ×660 ×1 ×1, 660 ×512 ×3 ×3, and 512 ×256 ×3 ×3,
respectively. Each convolutional layer is followed by a BN and
a ReLU activation. Such complex baselines achieve 82.8% and
82.5% on joint Ac, respectively. However, with the same level
of network parameters, our method (85.1%) still achieves the
best performance, showing the effectiveness of the attention
modules.

2) Analyze the Attention Module: We analyze the effects of
disease-specific and disease-dependent attention modules. The
comparisons are conducted with the same network backbone
(ResNet50) and training strategies. The results are reported
in Table IV by the 10-fold cross validation on the Messi-
dor dataset. Compared with the “Joint training”, adding the
disease-specific attention module, i.e., “CANet (d-S only)”
enhances the Joint Ac from 82.0% to 84.1%. The accuracy
of DR and DME are also improved from 89.1% to 91.7%
(DR) and from 90.4% to 91.0% (DME), respectively. These
comparisons demonstrate that disease-specific attention mod-
ule explores more discriminative features for specific disease
grading.

Then, we analyze the importance of the disease-
dependent attention module for DME, i.e., “CANet (d-S; d-D

DR⇒DME)”. This experiment indicates that the correlative
feature learned on DR is incorporated to DME branch, and
vice versa. It is observed that DR⇒DME improves the Joint
Ac result to 84.5%, and DME grading results are enhanced
on most evaluation metrics. Furthermore, we also analyze the
importance of the disease-dependent attention module for DR,
i.e., “CANet (d-S; d-D DR⇐DME)”. With this dependent
attention branch, the joint accuracy is boosted to 84.9%, and
DR grading results are also increased on most evaluation
metrics. When we incorporate the disease-dependent attention
module into both branches, our method “CANet (λ = 0.25;
final model)” achieves the highest results, with joint Ac
of 85.1%. These results validate that the disease-specific and
disease-dependent attention module are both effective to utilize
the disease-specific and disease-dependent information for
better joint grading.

3) Analyze the Weight λ in the Loss Function: We analyze
the effect of the weight λ in our method. The bottom part of
Table IV shows the results with different weights in the loss
function. When λ = 0.00, that whole framework is trained
with the final refined DR and DME features that include the
both specific and dependent information. When λ increases,
the network is trained with the additional supervision for
disease-specific attention. As shown in the Table IV, the vari-
ance of results with different λ is little, which indicates that our
method is not very sensitive to the weight in the loss function.
Our method reaches the best “Joint Ac” result (85.1%), when
λ = 0.25. Therefore, we choose this model as our final
model.

4) Analysis on Architectures: To analyze the effectiveness
of backbone models, we perform experiments on “Joint
training” to select the proper backbone architecture. The
“Joint training” denotes that we employed a backbone net-
work for shared feature extraction and two individual fully
connected layers for DR and DME grading, respectively.
We implemented with ResNet50 [42], ResNet34 [42], and
DenseNet161 [51] and the results is showed in Table VI. We
can see that ResNet50 achieves better results and finally we
use ResNet50 as the backbone model.
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TABLE V
COMPARISON WITH OTHER MULTI-TASK LEARNING METHODS ON THE MESSIDOR DATASET. THE REPORTED

RESULTS ARE THE MEAN OF 10-FOLD CROSS VALIDATION (UNIT: %)

TABLE VI
RESULTS OF DIFFERENT BACKBONE ARCHITECTURES

ON THE MESSIDOR DATASET (UNIT: %)

D. Compare With Other Multi-Task Learning Methods

To the best of our knowledge, there is no previous work
for joint DR and DME grading. To show the effectiveness
of our method for joint grading, we compare our method
with two recent multi-task learning methods in the medical
imaging community. Chen et al. [9] designed a method for
the Age-related Macular Degeneration disease grading, while
Liu et al. [11] proposed a network for both lung nodule
classification and attribute score regression tasks. Since these
works are not tailored for DR and DME grading, we did not
directly use their methods for joint DR and DME grading.
Instead, we adapted their key ideas to our task with the same
network backbone and training strategies for fair comparison.
For [9], after the ResNet50 feature extractor, we use the
average pooling operation. Then, we use another one fully
connected layer to reduce the channel number to 1024, fol-
lowed by three fully connected layers (channel number: 1024,
256, 128) for DR and DME grading, respectively. The dropout
layer is also employed. For [11], we use a fully connected layer
with channel size 256 to concatenate the information from one
task to another task, then two individual fully connected layers
are employed for final DR and DME grading, respectively.

We report the performance of these two methods in Table V.
It is observed that our method clearly outperforms these multi-
task learning based methods on the Joint Accuracy metric.
Compared with [11], our method achieves 1.4% (AUC) and
2.3% (Ac) improvement for DR; 1.8% (AUC) and 0.8% (Ac)
improvement for DME. These results show the superiority of
our framework for joint DR and DME grading.

E. Comparisons on the Messidor Dataset

We also compare our method with other DR grading models
and DME grading models reported on the Messidor dataset
in Table VII. As described in section II, there are two main
branches for DR grading: employing both image-level and
lesion location information as the supervision [32], [33], [53],

TABLE VII
RESULTS OF DIFFERENT METHODS ON THE MESSIDOR DATASET. OUR

RESULT IS UNDER 10-FOLD CROSS VALIDATION. OTHER RESULTS

ARE COPIED FROM ORIGINAL PAPERS. “−” INDICATES

NO REPORTED RESULT

[54], and employing only image-level supervision [35], [48],
[49]. As for DME grading, some works [6], [7], [38] utilized
macular or lesion location information features to help the
grading of DME. For fair comparison, we only compare with
those methods with only image-level supervision.

For DR grading models, the combined kernels with multiple
losses network (CKML) [49] and VGGNet with extra kernels
(VNXK) [49] aims to employ multiple filter sizes to learn fine-
grained discriminant features. Moreover, clinical experts [48]
were also invited to grade on the Messidor dataset. It is worth
mentioning that our method outperforms the clinical experts
by 2.3% abd 4.3% on the AUC metric. Note that the clinical
experts are provided by specific expert in [48]. Recently,
Wang et al. [35] proposed the gated attention model and
combined three sub-networks to classify the holistic image,
high-resolution crops and gated regions. It is worth noticing
that they first pretrain their model on EyePACS dataset [52]
and then fine tune on the Messidor dataset, while we only
use the Messidar dataset to train our model. Our method with
cross-disease attention module further pushes the result, which
obtains 1.5% Ac and 0.6% AUC gain over Zoom-in-net. For
DME grading, our model excels the other reported results [39]
by 2.4% improvement on Ac metric.

F. Results on the IDRiD Challenge Leaderboard

Table VIII shows the results of our method and other chal-
lenge participation methods on the IDRiD challenge dataset.3

3Challenge results are in https://idrid.grand-challenge.org/Leaderboard/
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Fig. 5. Visual results of our method on the test set in the IDRiD dataset. We list the ground-truth, followed by the prediction score for different
severity for each individual disease in a sequential order (0-4 for DR and 0-2 for DME). Blue indicates our predicted grade and green box indicates
the ground-truth.

TABLE VIII
COMPARISON WITH THE REPORTED RESULTS ON THE IDRID

LEADERBOARD. (UNIT: %)

Our model is trained with only the data in the Sub-challenge
2 (image-level supervision). It is observed that our model
achieves a joint accuracy of 65.1%, which is higher than the
top-ranked result by LzyUNCC (an unpublished work) on the
leaderboard, with a relative 2.0% improvement on the joint
accuracy. Lastly, it is worth noting that we trained our model
using only the data in Sub-challenge 2 in the IDRiD dataset,
while others (unpublished works) may use model ensem-
bles or other supervision provided in other Sub-challenges.

We also analyze the effect of each attention module on the
IDRiD dataset, and the results are shown in Table IX. With
only disease-specific attention modules (CANet (d-S only)),
our method excels the joint training baseline by 1%. Two
disease-dependent modules “CANet (d-S, d-D DR⇒DME)”
and “CANet (d-S, d-D DR⇐DME)” both further improve
the joint grading performance by exploring the dependence
between these two diseases. We can also observe that DME has
much influences for the grading of DR, and this observation
is consistent with that in the Messidor dataset in Table IV.

Fig. 6. The learning curves of our method on the Messidor dataset (a)
and IDRiD dataset (b).

With both direction dependent attention modules, our method
achieves the best performance with Joint Ac 65.1%. Finally,
we visualize some examples of the disease prediction score
of our method on the IDRiD dataset in Figure 5. We can see
that our method clearly differentiates the severity for DR and
DME, respectively. secondAs shown in Figure 6, we visualize
the learning curves of our method on the Messidor dataset and
IDRiD dataset, respectively.

V. DISCUSSION

Recently, with the advances of deep learning
techniques, automatic grading of DR and DME
has been widely studied in the research community
[6], [7], [32], [33], [35], [38], [53]–[55]. Although the large
improvements have been achieved on these tasks, to the best
of our knowledge, there is no previous works that jointly
grade these two diseases and model the relationship between
them. In this work, we investigate the importance of the
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TABLE IX
RESULTS ON THE IDRID DATASET WITH DIFFERENT ATTENTION

MODULES SETTING. (UNIT: %)

relationship between DR and DME for the joint grading
task, and propose a cross-disease attention network (CANet)
to capture the relationship between these two diseases.
One method consists of two kinds of attention modules:
one to learn disease-specific features and another to learn
disease-dependent features. Results shown on two public
benchmark datasets, i.e., the Messidor dataset and 2018 ISBI
IDRiD dataset, demonstrated the effectiveness of our method.

Although the good performance achieves, the limitation
of our method still exists. The whole network is trained
with only image-level supervision, making it very challenging
to find the accurate abnormal signs, such as soft exudates,
hard exudates, microaneurysms, and hemorrhage. The lesion
masks or bounding boxes would provide the location informa-
tion of these abnormal signs, which would be largely beneficial
to the grading tasks [32], [33], [56], since the severity is
usually based on the lesions. However, we are not aware
of any public datasets containing both DR, DME grading
labels, as well as the lesion or abnormal region segmentation
masks. One solution is to collect the datasets with massive
annotations, i.e., lesion masks and the grading labels of multi-
diseases. Another feasible solution is to explore how to utilize
the lesion segmentation information from additional datasets
to help the joint DR and DME grading. The dataset with lesion
masks and dataset with DR & DME grading labels may have
domain shifts, and generative adversarial networks [57]–[59]
will be beneficial for this task.

Our method is feasible to extend to more correlated diseases.
The attention mechanism aims to learn the attentional weights
among multiple diseases. If we have multiple correlated dis-
eases, the architecture will have multiple outputs, and each
of them is optimized by an individual loss function to obtain
the disease-specific features. Moreover, the disease-dependent
attention module can be added to these diseases. For example,
if there are five correlated diseases, 20 disease-dependent
attention modules should be designed, and each module learns
the correlation between every two diseases. Due to the high
computational cost, the limitations would be the effective
design of such attention blocks.

The future direction we would like to work on is to better
model the relationship between DR and its complication DME,
and also explore the relationship of multi-diseases occurred
in one image. One potential research direction is to use
the graph convolutional neural network [60] to model the
relationship among different diseases. Through this, we hope
to leverage the correlative information to improve joint grading

performance. Also, it might bring some new insights to help
doctors in understanding the diseases and their complications.

VI. CONCLUSION

In this work, we present a cross-disease attention network
(CANet) to jointly grade DR and DME, and explore the
individual diseases and also the internal relationship between
two diseases by formulating two attention modules: one to
learn disease-specific features and another to learn disease-
dependent features. After that, the network leverages these two
features simultaneously for DR and DME grading to maximize
the overall grading performance. Experimental results on the
public Messidor dataset demonstrate the superiority of our
network over other related methods on both the DR and DME
grading tasks. Moreover, our method also achieves the best
results on the IDRiD challenge dataset. In the future, we plan
to train our network jointly with the lesion annotations to
further improve the DR and DME grading performance.
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