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Abstract

This study aims to demonstrate a low-cost camera-based radioluminescence imaging system 

(CRIS) for high-quality beam visualization that encourages accurate pre-treatment verifications on 

radiation delivery in external beam radiotherapy. To ameliorate the optical image that suffers from 

mirror glare and edge blurring caused by photon scattering, a deep learning model is proposed and 

trained to learn from an on-board electronic portal imaging device (EPID). Beyond the typical 

purposes of an on-board EPID, the developed system maintains independent measurement with 

co-planar detection ability by involving a cylindrical receptor. Three task-aware modules are 

integrated into the network design to enhance its robustness against the artifacts that exist in an 

EPID running at the cine mode for efficient image acquisition. The training data consists of 

various designed beam fields that were modulated via the multi-leaf collimator (MLC). Validation 

experiments are performed for five regular fields ranging from 2 × 2 cm2 to 10 × 10 cm2 and three 

clinical IMRT cases. The captured CRIS images are compared to the high-quality images collected 

from an EPID running at the integration-mode, in terms of gamma index and other typical 

similarity metrics. The mean 2%/2 mm gamma pass rate is 99.14% (range between 98.6% and 

100%) and 97.1% (ranging between 96.3% and 97.9%), for the regular fields and IMRT cases, 

respectively. The CRIS is further applied as a tool for MLC leaf-end position verification. A 

rectangular field with introduced leaf displacement is designed, and the measurements using CRIS 

and EPID agree within 0.100 mm ± 0.072 mm with maximum of 0.292 mm. Coupled with its 

simple system design and low-cost nature, the technique promises to provide viable choice for 

routine quality assurance in radiation oncology practice.
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1. Introduction

The current trend of external beam radiation therapy is moving toward increasingly precise 

and accurate delivery of highly conformal, organ-at-risk sparing dose distributions. In 

response to the increasing delivery complexity, pre-treatment quality assurance (QA) is 

requisite to ensure safe treatment delivery. Most dosimetric and geometrical QA depend on a 

megavoltage X-ray imaging modality that can accurately record the beam profile and 

intensity (Klein et al 2009). Electronic portal imaging device (EPID) is a popular imaging 

tool that has been exploited for various QA purposes and is already integrated in most 

modern linear accelerator (linac), referred to as on-board EPID. While on-board EPIDs 

maintain wide availability and high image quality, they do not provide independent 

measurement needed by certain QA tasks, e.g. end-to-end verification on image-guided 

treatment, in which, the QA device should be independent of treatment system and the QA 

procedure should follow the patent treatment procedure including simulation, plan creation 

and plan delivery phases. Detector array-based devices, such as ArcCHECK™ (Sun Nuclear, 

Melbourne, FL), extend the independent measurements with co-planar detection ability to 

allow verifications on linac gantry angle (Feygelman et al 2011). However, the current pixel 

pitch (~0.7 cm for ArcCHECK™) could be marginal to meet a stringent passing criterion, 

especially for small field measurements in stereotactic radiosurgery application.

Camera-based radioluminescence imaging system (CRIS) provides a cost-effective 

alternative to EPID and has been sought after for geometric (Jenkins et al 2015,2016) and 

dosimetric verifications in radiation therapy (Frelin et al 2008, Guillot et al 2011, Cheon et 

al 2019). Benefitting from a modern imager sensor used, high acquisition rate and high 

measurement sensitivity could be readily reached, which is significant for beam 

visualization in real time with high dynamic range. However, CRISs suffer from severe 

optical scattering that leads to edge blurring and mirror-glare artifacts. To ameliorate the 

image quality, a variety of solutions have been exploited towards hardware and software 

optimizations. Collomb-Patton proposed to improve the image quality with a flat-field 

calibration approach, in which, a dosimetric film was overlaid on top of the scintillator sheet 

to acquire the reference image (Collomb-Patton et al 2009). However, this correction was 

limited in small field scenarios, and was advanced by the subsequent solutions based on 

deconvolution. To proceed with practical deconvolution operation, efforts have been made to 

conditionally simplify the kernel expression. Lee et al proposed a single-optical kernel 

strategy by assuming a spatially invariant and angularly isotropic scattering behavior in the 

detected radiation image (Lee et al 2018). Synthesizing EPID images from CRIS images is 

essentially a super-resolution (SR) problem in the computer vision field, which aims to 

restore a high resolution (HR) image from the low resolution (LR) counterpart coupled with 

diffuse-induced artifacts. SR algorithms have been greatly improved via various deep 

learning techniques, e.g. generative adversarial network (GAN) (Goodfellow et al 2014). A 

representative SR GAN is the one proposed by Wang et al (2018), referred to as enhanced 

SRGAN (ESRGAN). SRGAN benefits from joint improvements in network structure (a 

residual-in-residual dense block (RRDB) was proposed and used as the basic network 

building unit) and loss function design (a perceptual loss that measures the similarity 

distance in feature space was used to maintain high-frequency details). To focus on task-
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specific structures and further improve the image quality, Biting et al recently proposed an 

edge-aware GAN (Ea-GAN) to enhance the cross-modality synthesis performance (Yu et al 

2019). However, the attention mechanism is achieved using an analytical approach that may 

mistakenly focus on task-irrelevant structures such as the artifacts, thus degrade the image 

quality.

There are three major challenges in synthesizing high-quality EPID image from CRIS image 

using a typical SR network: (1) The EPID images employed as the training ground truth 
contain synchronization artifacts, which are referred to as ‘weak labels’. The artifacts arise 

when an EPID running at full speed (~10 frame per second), namely the cine mode 

(Mooslechner et al 2013). With an EPID running in cine mode, multiple frames can be 

acquired for each treatment field (one frame per control point) as opposed to integration-

mode, allowing for efficient collection of the training dataset. Furthermore, predictions on 

every control point in a treatment field encourage a comprehensive understanding of 

treatment delivery (Korreman et al 2009). (2) There is a latent field shape discrepancy from 
mechanical limitation, e.g. reproducibility of multi-leaf collimator (MLC) leaf position, in 
the respective deliveries for EPID and CRIS imaging. Therefore, the network has to learn 

abstractive features (e.g. the blurring behavior in the penumbra region) that are less sensitive 

to field size variations, instead of pixel-wise mapping. (3) The learning network needs 
attention mechanisms to maintain high-fidelity beam visualization that determines the 
accuracy of related QA tasks. For example, QA of MLC imposes sub-millimeter accuracy on 

the MLC leaf-end positions that are read from the acquired image (Klein et al 2009).

In this work, we developed a CRIS with deep-learning-based image processing for high-

quality beam visualization in radiotherapy, which promises to be a clinical QA tool for 

reliable mechanical and dosimetric verifications. This system contains a cylindrical receptor 

that allows a co-planar detection fashion similar to an ArcCHECK™ to catch the latent 

errors from gantry angle and achieves an image quality comparable to an on-board EPID. To 

address the challenges above, task-aware perceptual modules are integrated into the deep 

learning network design by optimizing on critical structures that are highly related to the 

beam fidelity. Experiments were performed to visualize various beam shapes modulated via 

MLC. The imaging quality was validated by comparing to the benchmark EPID images 

collected in the integration-mode for both regular beam fields and three IMRT cases. 

Additional experiments were performed to explore the application on MLC leaf-end position 

verification. The proposed deep learning mode was compared to other state-of-art models in 

this application.

2. Method and materials

2.1. Proposed radioluminescence imaging system

2.1.1. Hardware design—Figure 1 shows the developed CRIS system. The inner 

surface of a 3D printed hollow cylinder is overlaid with a scintillator sheet (DRZ-plus™, 

MCI Optonix, Sedona, Arizona, USA), which is composed of three layers, i.e. a 6 μm thick 

protective layer (polyester), a 208 μm thick phosphor layer (Gd2O2S), and a 250 μm thick 

supporting layer (plastic). The scintillator sheet emits 545 nm light upon interaction with the 

megavoltage (MV) photons. The radiation-induced light from the scintillation coated layer is 
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reflected by a hemispherical mirror mounted at the far end of the cylinder and recorded by a 

CMOS camera (GS3-PGE-23S6M-C, Point Grey Research, Inc., Richmond, Canada) 

mounted at the other end of the cylinder. The spatial resolution of the CMOS camera is 1920 

× 1200 pixel, resulting in a spatial resolution of ~0.45 mm in the region with the most 

distortion. By aligning the imaging center to that of the hemispheric mirror and the gantry 

isocenter, the system allows a co-planar detection for all the gantry angles theoretically. For 

proof-of-concept demonstration in this work, the scintillator sheet partially covers the inner 

surface with a range of 214°.

2.1.2. System calibration—The geometric distortion caused by hemispheric mirror 

was corrected via affine transformation, in which, the deformation field was measured by 

using a chessboard overlaid to the scintillator sheet. Additional calibrations include the 

typical dark-field and flood-field corrections (Van Nieuwenhove et al 2015). Five plastic 

fiducial points (see blue dots in figure 1) are distributed on surface of the phantom to work 

with the room laser system for alignment. Similar to ArcCHECK™ and other QA systems 

that contain a cylindrical or conical sensing receptor, the developed system is sensitive to 

any misalignment, which, in turn, encourages the potential for verification on radiation 

isocenter. Calibrated images still suffer from the blurring and mirror-glare issues caused by 

light scattering, which are mitigated using the deep learning model trained from the images 

collected from the cine-mode EPID.

2.2. Deep learning model for radioluminescence image enhancement

2.2.1. Overview of cRI-GAN—Figure 2 shows the pipeline of the cRI-GAN framework 

for radioluminescence image enhancement. The input images (x) were obtained from the 

CRIS; and the weak labels (y) were EPID images acquired in the cine-mode. The network 

consists of a generator (G), a discriminator (D) and three subnetworks responsible for 

deriving task-aware perceptual losses. We define that a leaf edge is composed of a leaf end 

and two inter-leaf boundaries. The task-aware perceptual modules take the generated images 

(G(x)) and the weak label (y) as the input, and generate the representations of task-specific 

structures in the feature space as the output, including leaf ends that measure the leaf 

position, leaf edges that determine the beam profile, and mirror glare regions that contain the 

dominant artifacts in CRIS images. These output features are used to quantify the 

corresponding perceptual loss functions. In particular, an adversarial loss (ℒadv) is 

constructed to keep the beam geometry, a style loss (ℒstyl) is designed to specifically handle 

the accuracy of leaf ends, and a content loss (ℒcont) is used to suppress glare artifacts and 

prevent overfitting outside the primary beam. Finally, a weighted combination of these three 

losses forms the objective function. By automatically learning the task-specific features and 

minimizing the corresponding perceptual losses, a selective learning is formulated to 

preserve the high-resolution characteristics in the weak labels while eliminating both 

synchronization artifacts and mirror-glare artifacts.

2.2.2. Task-aware perceptual modules

Leaf-end awareness (Style loss): Difference between the leaf end and the inter-leaf 

boundary was investigated to automatically extract the leaf ends representations in feature 
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space. For a CRIS image shown in figure 3(a), the edge spread functions are found to be 

distinct (figure 3(b)) from the inter-leaf boundary, which could be physically explained by 

the curved face design of the leaf end structure (Macdonald et al 2020). Leveraging from the 

sensitivity of convolution operation on gradient variance, a deep neural network (DNN) is 

used to learn the characteristic scattering behavior so as to elicit the leaf end representation. 

The DNN is based on a pretrained VGG16 (Simonyan and Zisserman 2014) to reuse the 

latent shared feature information. Example feature maps of the arbitrary CRIS image 

extracted from the VGG16 are shown in figure 3(c), nominated as ℱi(x), which are the 

integrations of the output of the convolutional layer before the ith max-pooling. Low-level 

features such as the leaf edges can be found in the shallow layers, e.g. ℱ1(x) to ℱ3(x). 
Proceeding towards deeper layers, higher-level features with more abstractive information 

are learned. In this procedure, the representation of dilated leaf end was found in the mid-

level feature maps ℱ4(x). A style loss ℒstyl is then defined to minimize the perceptual 

similarity between ℱ4(y) and ℱ1(G(x)), formulated as

ℒstyl = E F4 y − F4 G x 1 , (1)

where ‖·‖1, denotes l1-norm. It is noteworthy that, dilation on desirable structure is critical 

for the training stabilization and synthesis quality in SR problems (Rad et al 2019).

• Leaf-edge awareness (Adversarial loss): The leaf edges, which determines the basic 

beam profile, are used as the metric to evaluate the overall image synthesis. Along this line, 

the leaf edges representations are taken as input to the discriminator (D) for a real/fake 

identification. The leaf edge is represented via ℱ2(x), which outperforms other feature 

representations in structure fidelity and signal contrast. The adversarial loss is expressed as:

ℒadv = Ey PEPID y log D F2 y + Ex PCRIS x log 1 − D F2 G x, cn , (2)

where PCRIS(x) and PEPID(y) is the distribution of the measurement from original CRIS 

image and the cine-mode EPID image, respectively. A joint regularization via ℒstyl and 

ℒadv is formulated on the critical leaf end and leaf boundary.

Glare-region awareness (Content loss): The mirror-glare artifacts are visible in the dark 

regions on top of the image (see figure 6(a)), referred to as glare region. To preserve the 

penalties over the critical structures in ℒstyl and ℒadv, the glare-region is represented as the 

complement of the leaf edge, i.e. ℱ2( = ℱ2
max − ℱ2). The artifacts in the glare region are 

eliminated by the pixel-wise correction via the content loss

ℒcont = E y − G x ⊗ F 2 y 1 , (3)

where ⊗ denotes an element-wise product.

Total loss: The final objective function to optimize G and D can be formulated as
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ℒD = − ℒadv
ℒG = ℒadv + λcℒcont + λsℒstyl

, (4)

where λc and λs are used to weight the content loss and style losses with respect to the 

adversarial loss.

2.2.3. Network details—Figure 4(a) shows the architecture of generator G, which 

contains two convolution blocks with a stride size of two for down-sampling, fifteen RRDB 

(Wang et al 2018), two transposed convolution blocks with a stride size of two for up-

sampling, and one convolution layer followed by Tanh activation. A global skip connection 

is introduced, which makes the network to focus on learning the residual correction to the 

original CRIS image, encouraging faster training process and better network generalizability 

(Kupyn et al 2018). Figure 4(b) illustrates the framework of discriminator D, where the top 

layers are transferred from a pertained VGG16, and the subsequent layers include three 

convolution blocks with a stride size of two for down-sampling and a convolution layer 

followed by two dense layers with Tanh and Sigmoid activations. In every convolution 

block, there are two convolution layers followed by a batch-normalization layer and a 

LeakyReLU activation with α = 0.2 (Radford et al 2015). While the top layers are frozen, 

the subsequent layers remain trainable to yield high-level features for semantic evaluation on 

the generated images.

At each epoch, G was updated once followed by five-times D updates. The Adam optimizer 

was used with β1 = 0.9, β1 = 0.999 and ϵ = 10−8 (Kingma and Ba 2014). The batch size was 

set as 4. The learning rate is initialized as 10−4 for both G and D, and linearly decayed after 

half the training epochs. In all experiments, λc = 0.5 and λstyl = 1 were set empirically. A 

large λc showed negative effects on both the image synthesis quality and training stability, 

which might be explained by the adversities from the pixel-wise minimization in ℒcont. The 

whole framework was built on PyTorch with an NVIDIA TITANV GPU. The training time 

of the network was around twelve hours and the inference time was 0.05 s per image. To 

compromise on the learning speed and GPU memory, all the images were normalized and 

resized to 320 × 320, corresponding to a pixel size 0.44 mm for the regions with the most 

distortion. During the training process, the samples of CRIS and EPID images were fed in 

random order.

2.3. Dataset collection

A Varian linear accelerator (linac) (2100CD, Varian Medical Systems, Palo Alto, California) 

equipped with a Millennium MLC was used to deliver 6 MV x-ray beams at 600 MU min−1. 

The linac was calibrated in accordance with the AAPM TG142 (Klein et al 2009). The MLC 

consists of two banks of 60 leaves: the central 40 leaves of each bank are 0.5 cm in width (at 

the isocenter plane) and the outer 20 leaves are 1.0 cm in width. The on-board EPID was set 

in a SSD of 100 cm and the gantry angle was set to 0°. Flat-field and dark-field calibrations 

have been performed for the EPID running in both cine mode and integration mode. The 

axis of the CRIS cylinder was centered to the isocenter. The measured dataset was divided 

for network training and validation.

Jia et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The training datasets were collected from the CRIS and the EPID running in cine-mode. The 

planned beam shapes are shown in figure 5, where the circular and comb-like shapes are 

designed for learning the inter-leaf and intra-leaf information, respectively. Image pairs were 

acquired for 12 MLC rotations angles from 0° to 180° at step size of 15°. Random rotations 

within a range of 15° were simulated in image post-processing as complementary data 

augmentation. To demonstrate the capability of synthesizing high-quality EPID images, test 

images were acquired in the integration mode, where artifacts were already eliminated using 

the linac built-in software. The test dataset consists of regular fields and three clinical IMRT 

cases delivered at the gantry angle fixed to 0°. The regular fields include a set of MLC-

shaped square fields: 2 × 2 cm2, 4 × 4 cm2, 6 × 6 cm2, 8 × 8 cm2 and 10 × 10 cm2. The 

clinical IMRT cases include a brain, a lung, and aprostate case, with the number of fields 

(and step-and-shot segments) being 6 (136), 6 (142), and 7 (77), respectively. The ranges of 

field sizes are 8.0 × 7.5 cm2–13.0 × 8.0 cm2, 8.0 × 6.5 cm2–11.5 × 7.0 cm2, and 9.0 × 6.5 

cm2–11.1 × 6.5 cm2, for the brain, lung, and prostate cases, respectively. The enhanced 

CRIS images and EPID images were registered by aligning the intensity centroids in the 10 

× 10 cm2 field images. Furthermore, pixel intensity of the enhanced CRIS images was 

calibrated to that of the EPID image for a 10 × 10 cm2 field, which is based on the assumed 

linear relation between the intensities measured from CRIS and EPID. In reality, the 

Gd2O2S-based scintillator materials used have been widely accepted for dose linearity.

2.4. Evaluation metrics

In validation, the synthesized EPID images were compared to the ground truth EPID images 

that were acquired in the integration-mode with higher image quality than those from the 

cine-mode EPID. The similarity is quantized using mean squared error (MSE), peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM), gamma index (γ) (Low and 

Dempsey 2003), and pixel deviation (σ). σ is defined as the relative difference of pixel 

intensity between the CRIS and EPID images, which is calculated as the ratio between the 

absolute difference and the maximum intensity of the EPID image. The gamma analysis was 

performed for absolute intensity or fluence comparison. EPID images shown in the result 

section were normalized for display purpose only. Additionally, signal-to-noise ratio (SNR), 

which was calculated following the method in (Mooslechner et al 2013), is used to evaluate 

the performance of synchronization artifacts suppression. Furthermore, the gamma passing 

rates were calculated (γpass) using various gamma criteria of 1% (global intensity)/1 mm 

(distance-to-agreement) and 2%/2 mm with a low-intensity cut-off threshold value of 10%. 

The pass criteria were that more than 90% pixels should have a γ less than one.

3. Experiments and results

3.1. Verification of images captured for regular fields

An evaluation was performed for a set of square fields with side lengths of 2,6,8 and 10 cm. 

We assess the suppressions of the artifacts as well as the improvements of image quality.

3.1.1. Suppression of mirror-glare and synchronization artifacts—The mirror 

glare is caused by the inter-reflections between the mirror and the phosphor screen, and is 

aggravated with the reduced distance in between. In our case, the glare artifacts are observed 

Jia et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on top of the image (see figure 6(a)), where the detected photons have experienced more 

scatterings due to the shorter distance. With an increase in beam size, the deviation inside 

the glare artifact regions increases, e.g. up to 40% pixels have a pixel deviation (σ) more 

than 10% for a 10 × 10 cm2 field. In the EPID images acquired in the cine-mode, there are 

obvious synchronization artifacts manifested as the gridding shadow, accounting for up to 

2% pixel deviation depending on the beam size. These artifacts are distinguished from the 

vertical inter-leaf leakage stripes in the ground truth EPID images, which are caused by the 

gaps between the leaves. In the enhanced CRIS images obtained using cRI-GAN, glare 

artifacts are effectively suppressed. Comparing to the original CRIS image captured for a 10 

× 10 cm2 field, the number of pixels in the enhanced counterpart that have a pixel deviation 

(σ) larger than 2% reduces to 3.5% and the maximum σ reduces to 4%. SNRs are calculated 

for the EPID images (acquired in both the cine-mode and the integration-mode) and for the 

enhanced CRIS images in table 1. It can be seen that the noise in the enhanced CRIS images 

is substantially reduced as compared to that in the cine-mode EPID and is even lower than 

that in the ground truth integration-mode EPID. The SNR values of the enhanced CRIS 

images have a mean increase ratio of 133.5% (range from 26.7% to 221.3%) with respect to 

those of the cine-mode EPID images. In comparison, the mean increase ratio of the 

integration-mode EPID images versus the cine-mode EPID images is 118.6% (range from 

40.1% to 240.6%), which is in agreement with the previous studies (Roberts et al 2008, 

Mooslechner et al 2013). The lower degree of improvement in the 10 × 10 cm2 field could 

be attributed to the larger area of the glare artifact region as presented in the given field of 

view.

3.1.2. Quantitative analysis—The improvements of image quality achieved in the 

resultant CRIS images are further confirmed in terms of MSE, PSNR, SSIM, and γpass, as 

listed in table 2. Substantial improvements can be found in MSE and PSNR values. The 

mean MSE reduction ratio (i.e. the percentage reduction averaged over various field sizes) 

and the mean PSNR increase ratio are 88.6% and 35.6% respectively. In comparison, SSIM 

improvements are moderate (mean of 7.8%). Figure 6(b) shows the inter-leaf leakages that 

are recovered after image enhancement, demonstrating the capability of the algorithm in 

preserving true details. Deviations with γ ≈ 1 are found surrounding the primary beam from 

the gamma map in figure 6(e). The synthesis quality is further evaluated via γpass with 1%/1 

mm and 2%/2 mm criterion. The gamma pass rate (1%/1 mm) decreases with increasing 

field size due to the increasing area of the glare artifact region. The mean γpass for the 

processed CRIS images are 83.2% (1%/1 mm) and 99.1% (2%/2mm), compared to 62.1% 

(1%/1 mm) and 84.8% (2%/2 mm) for the original images. Caused by the glare artifacts, 

γpass for the 10 × 10 cm2 original field is 19.3% (1%/1 mm) and 42.3% (2%/2 mm).

3.2. Verification of images captured for IMRT cases

We further explored a preliminary application on patient-specific QA for three IMRT cases 

by comparing the captured CRIS images with those collected from the calibrated EPID 

running in integration mode. As an example, comparisons among the original CRIS image, 

enhanced CRIS image, and corresponding EPID images are shown in figure 7 for the fourth 

field in the prostate case. The CRIS image is an integration of multiple frames captured for 

every control point in an IMRT field, and the image enhancement was performed frame by 
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frame. The glare artifact is visible on top of the original CRIS image, accounting for a pixel 

deviation of 2.6%. The glare artifact is less obvious comparing to that in figure 6(a), since 

multiple small beam fields that were involved in the integrated result are relatively far from 

the top regions. The original CRIS image also shows blurred edges and missing details on 

the inter-leaf leakages which was enhanced in the figure (b). In the gamma map in figure 

7(d), deviations (γ ≈ 1.0) can be mainly found in the penumbra regions surrounding the 

primary beam, which agrees with the deviation distribution for regular field case as shown in 

figure 6(e). Additional deviations can be found both inside the primary beam region and the 

region pointed with a black arrow in figure 7(d). By checking the settings in TPS, the 

pointed region is covered by the secondary collimator jaws. The gamma analysis results of 

the IMRT cases using 2%/2 mm criterion are summarized in table 3, where the last column 

shows the averaged gamma passing rates over the whole fields in each case. The passing 

rates for every single fields range from 92.9% to 99.5%, and the mean passing rates are all 

above 95%.

3.3. Application on MLC leaf-end positioning

To investigate the measurement sensitivity with respect to leaf end position, twenty leaf pairs 

with various displacement errors (in a sinusoid pattern with an amplitude of 0.3 mm) were 

used to deliver a field of 100.0 × 50.6 mm2 as depicted in figure 8. Synthesized images were 

interpolated with an upscaling factor of 5 to achieve a sub-pixel positioning accuracy (the 

original pixel size is 0.44 mm). The leaf end positions were determined as those corresponds 

to 50% maximum value on edge of the rectangular field. The 0-mm position (indicated with 

a dark dashed line in figure 8(a)) is aligned to the center axis of the field of view that is 

calibrated via the fiducial points located on the outer surface of the phantom. The leaf 

position obtained from the enhanced CRIS images and the on-board EPID images acquired 

using the integration-mode as well as the values in the treatment planning system (TPS) are 

compared in figure 8(b). The discrepancy between the measurements from CRIS and EPID 

(a mean of 0.099 mm ± 0.072 mm with 0.292 mm maximum) is smaller than the difference 

between CRIS measurement and TPS calculation (a mean of 0.391 mm ± 0.292 mm with 

0.495 mm maximum). It is noteworthy that, the MLC motion is not perfectly consistent in 

two deliveries. In accordance with AAPM TG 142 report, MLC leaf position repeatability 

has a tolerance of ± 1 mm (Klein et al 2009). A standard deviation of 0.19 mm from ten 

measurements was reported in our monthly QA. Further quantitative investigation on the 

difference between CRIS and EPID images is demonstrated in the histogram (see figure 

8(c)), which shows the percentage of pixels that have a difference above the specified values. 

Only 7% leaf pairs show position deviations higher than 0.17 mm between those measured 

by the CRIS images and the EPID images.

3.4. Ablation analysis of cRI-GAN

Ablation analysis is performed to demonstrate the advantages of task-aware perceptual 

modules by removing one or two task-specific modules from the classic cRI-GAN design. 

The advantages are also demonstrated by comparing to modified cRI-GANs with traditional 

losses including a pixel-based style loss
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ℒstyl = E y − G x 1 , (5)

and a pixel-based adversarial loss

ℒadv = Ey ∼ PEPID y log D y + Ex ∼ PCRIS x log 1 − D G x, cn . (6)

The derived models with various combinations of losses are listed in table 3. The same data 

were used as in figure 6, and all the trainings were terminated upon 400 epochs. Quantitative 

analysis of SNR, PSNR, SSIM and γpass are given in table 4. In all the network models, the 

classic cRI-GAN (ℒadv + ℒcont + ℒstyl) and the conventional GAN (ℒadv) show the best 

and worst results, respectively, demonstrating the importance of additional constraints (in 

conjunction with the adversarial loss) as well as the effect of the perceptual loss. Among the 

three modules, ℒstyl contributes most, whereas ℒadv and ℒcont make similar contributions. 

For example, the combination of ℒadv + ℒcont + ℒstyl yields similar results as ℒadv + ℒstyl, 

slightly inferior to the classic model. The limited improvement of ℒadv could be explained 

by the fact that the features (ℱ2) exported from the pretrained VGG16 layers could be 

learned to certain extent by the discriminator (D) upon sufficient training. The contribution 

of ℒcont is limited by ℒstyl and ℒadv, since the target structure (mirror-glare region) in 

ℒcont is partially included in the dilated leaf ends and leaf edges in ℒstyl and ℒadv, 

respectively. Furthermore, ℒcont is assigned with a small weight (λc) as shown in equation 

(4), which is based on the concern that a pixel-based minimization might adversely affect 

image synthesis via over smoothing (Ledig et al 2017).

The training curves of these modified models are compared in figure 9, where the three 

cases with the top performance (i.e. ℒadv + ℒstyl, ℒadv + ℒcont + ℒstyl and the classic cRI-

GAN) are presented. The classic model shows the highest convergency accuracy and the 

most stable training process, which could be attribute to the minimization of the three 

perceptual losses calculated on low- and mid-level feature maps with a reduced dimension 

and compressed effective pixels. The peaks in the curves could be explained by the small 

training batch size (4), which is limited by the GPU memory.

3.5. Comparison with other state-of-the-art deep networks

The proposed cRI-GAN is compared with two state-of-the-art GANs containing task-

specific attention modules. One is the edge-aware GAN (Ea-GAN), which incorporates the 

edge information into its generator and discriminator to enhance synthesis quality (Yu et al 

2019). The other is the enhanced super-resolution GAN (ESR-GAN), which achieves high 

visual quality by exploiting improved network architecture, adversarial loss and perceptual 

loss (Wang et al 2018). Since these works are not intended for beam visualization, we did 

not directly run the models. Instead, we reserved their key ideas while adapting the same 

network backbone (including the structures of generator and discriminator) and training 

strategies (including the training data and optimization method) as ours for fair comparison.
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An experiment was performed with the data collected for an arbitrary field shape as shown 

in figure 10. The quantitative results are presented in table 5. In the original CRIS image, 

adversities from light scattering are obvious, including edge blurring and mirror-glare 

artifact located on top of the image. In ESR-GAN, a steep edge gradient and moderate inter-

leaf leakage recovery are obtained, yet the penumbra regions are totally lost. In the 

perceptual loss of ESR-GAN, the high-level features were the output from the last 

convolution layers in the last block of a pretrained VGG19. While the highly abstractive 

information neglects the details to some degree in the low-dose regions, i.e. those outside the 

primary beam. In comparison, Ea-GAN gives a better result with much more recoveries in 

the low-dose regions, but with limited suppression on the glare artifacts indicated with a red 

arrow. This could be explained by the edge extraction manner in Ea-GAN, which is based on 

a conventional gradient-based approach. In this way, the edges were extracted not only from 

the desirable targets, but also from the artifacts, including mirror-glare artifacts and 

synchronization artifacts. The subsequent minimization between EPID images and CRIS 

images would lead to unexpected recovery of the overlapped textures between the mirror-

glare artifacts and the synchronization artifacts. In cRI-GAN, the leaf edge is extracted from 

a DNN (a VGG16 pretrained on ImageNET), which has the potential to identify the 

desirable target through sufficient training. The feature maps extracted from CRIS images 

(ℱ2(x)) or EPID images (ℱ2(y)) showed that limited weights were assigned to the edges of 

the artifacts. Furthermore, the DNN-extracted edges have an dilation effect on the 

boundaries (see figure 10), which has been demonstrated necessary in GAN-based SR 

applications to benefit the convergence and synthesis quality (Rad et al 2019).

4. Discussion and conclusion

We have developed a low-cost CRIS for high-quality beam visualization in external beam 

radiotherapy. The cylindrical receptor design provides a pathway that allows co-planar 

measurement and detects the errors caused by the gantry angle. Moreover, the independent 

measurement potentially enables an end-to-end verification of the image-guided treatment. 

The primary cost of the system depends on both the CMOS camera and the scintillator sheet, 

which are typically much cheaper than array detector-based 2D and especially 3D devices 

such as ArcCHECK™ and Delta4™. For a proof-of-concept demonstration, the system is 

currently demonstrated using a fixed gantry angle due to the limited size of the scintillator 

sheet used. Once the scintillator sheet is extended to cover the entire inner surface of the 

cylindrical receptor, a co-planar detection could be achieved by aligning the imaging center 

to that of the hemispheric mirror and the gantry isocenter. In that case, the training data and 

deep learning model used here will still be valid due to the radially symmetric design. Any 

latent asymmetric factors caused by the camera-lens components could be removed via 

performing a flat-field correction.

To enhance the robustness of cRI-GAN against the latent noise in training data, task-aware 

perceptual modules were incorporated into the developed network architecture. A selective 

learning is formulated to avoid the disturbance from artifacts existing in the training images. 

Compared to pixel-oriented learning strategies widely adapted in traditional SR models, 

learning in feature domain enables to extract abstractive information that is less sensitive to 
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field size variations due to the limited mechanical consistency. We also demonstrated that 

the networks with loss functions in feature domain (namely, perceptual loss) achieve higher 

convergency accuracy and more stable training process. The validations of applying DNN-

based the attention mechanisms on critical beam structures were verified by comparing to 

that using analytical method (e.g. the edge extraction in Ea-GAN). The outperformance of 

cRI-GAN over several state-of-the-art SR networks was validated in terms of general 

similarity metrics and gamma passing rate.

The design ideas of the proposed deep learning model can be applied to generic networks. 

First, a joint regularization over hierarchical perceptual losses is likely to outperform an 

individual regularization. As demonstrated in our application, a variety of features that 

represent the critical structures or textures were extracted at different network layers and 

made their own contribution to the corresponding task objectives in the subsequent joint 

optimization. Second, different task-specific structures can be represented in the feature 

maps extracted from the shallow layers in a VGG16 network, which was pretrained with 

irrelevant dataset for the classification purpose. While this is only validated in the specific 

application, we believe that feature maps extracted using pretrained networks can be utilized 

for desirable representations so as to form task specific losses.

As a demonstration of our system, we performed our experiments on a Varian linac equipped 

with a Millennium MLC. Results were compared to those collected from an EPID running in 

integration mode, which generally provides images with higher quality than those from a 

cine-mode EPID. Quantitative analysis was performed using general similarity metrics and 

gamma index. Improvements on artifacts compression, spatial resolution and details 

recovery were demonstrated for various regular fields ranging from 2 × 2 cm2 to 10 × 10 

cm2 and three IMRT cases. Our results agree well with those from an integration-mode 

EPID with a mean gamma passing rate (2%/2 mm) of 99.1% and 97.1% for the regular 

fields and three IMRT cases, respectively. In the gamma maps (see figure 6(e) and figure 

7(d)), failures are mainly found surrounding the primary beam, which could be attributed to 

both the limited reproducibility of MLC leaf positioning and accuracy of predictions in the 

penumbra regions. Gamma failures are also observed inside the beam region as shown in 

figure 7(d), where the imaging results for each IMRT field is an integration over all the 

controls points, overlapping the beam and penumbra regions. Current training datasets were 

collected with the secondary collimator jaws retracted, and thus the influence from the jaw 

position was not learned by cRI-GAN. Since the jaws follow MLC in the IMRT treatment 

plans, differences were found in the low-dose regions (see the pointed region in figure 7(d)). 

However, this difference is rather limited (a maximum gamma index of ~0.8) and mostly 

appears in the cut-off regions (less than 10% threshold) defined by typical gamma 

evaluations. This adversity maybe more pronounced for those scenarios with extremely low 

doses. Additional training could be performed in the future with the effect of the jaw setting 

taken into consideration.

We further designed an experiment to apply our system as a tool for MLC leaf-end 

verification. The positions read from the images acquired by our system are very consistent 

to those from an EPID (0.099 ± 0.072 mm). The superiority of the proposed deep learning 

network is confirmed with comparisons to other networks and ablation experiments. 
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Benefitting from the cylindrical geometry and high-fidelity beam visualization, the 

developed system could be a useful tool for various machine QA, patient-specific QA and 

MLC QA where high-quality beam visualization is required.

Despite the promising results achieved in this study, limitations exist. First, the mirror-glare 

artifacts are not completely suppressed. As observed from figure 6(b), some artifacts remain 

on top of the synthesized image although the percentage deviation is as low as 0.1%. This 

was caused by the supervised learning that aims at maximizing the similarity between the 

input image and the ground truth in an end-to-end training way. Consequently, the original 

structures and textures including those of the artifacts could be more or less inherited in the 

enhanced CRIS images due to the noise in the ground truth or cine-mode EPID images. The 

second pitfall is caused by the slightly unpaired training data. Limited by the practical setup, 

the acquisitions of EPID images and CRIS images were conducted in separate experiments, 

where MLC motions were not perfectly consistent.

To mitigate both problems, an unsupervised network architecture with the incorporation of 

task-specific modules could be employed to facilitate more reliable image domain 

translation and allow for learning with unpaired data in the future. For example, the cycle 

consistent loss, which is widely used in unsupervised image-to-image translation networks, 

enforces the network to learn a mapping from the target domain (EPID images) to the source 

domain (CRIS images) (Zhu et al 2017, Choi et al 2018). In this way, the network will be 

trained to catch all the details in the CRIS images, including the mirror-glare artifacts, 

which, in turn, could benefit the image synthesis. By incorporating the learned task-specific 

features into the cycle consistent losses, better results could be expected. For both the CRIS 

and the EPID, flat-field corrections are required to remove the inherent characteristics of the 

detectors such as the pixel sensitivity. Ideally, the corrections can be performed for an 

absolute flat radiation field. In practice, additional corrections can be applied for the non-

uniformity of the calibration radiation field. In this way, once the CRIS is calibrated and 

trained in one machine, it would reflect the true characteristics of the beam delivered by 

other machines. This study is mostly focusing on the imaging side without consideration of 

the additional corrections mentioned.

In summary, a novel CRIS is developed with the image quality comparable to that of an 

EPID running at the integration mode. The cylindrical receptor design enables independent 

measurement with co-planar detection ability. Benefiting from the high-quality image, low 

cost and streamlined data collection, the system promises to be a practical tool that provides 

reliable measurement for dosimetric and geometrical verifications in radiation oncology 

practice.
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Figure 1. 
A schematic diagram of our CRIS in (a) anteroposterior view, (b) axial view, and (c) lateral 

views. This device consists of a scintillator sheet, a hemispheric mirror and a digital camera. 

The scintillator sheet is overlaid to the inner surface of a cylinder; and the hemispheric 

mirror reflects the emitted visible light to the camera. Dimensions are indicated in a unit of 

millimeter. Panel (d) shows a photo illustrating the practical setup of the system during data 

acquisition. Five fiducial points denoted with blue dots are distributed on both the phantom 

and the camera.
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Figure 2. 
Illustration of the proposed cRI-GAN framework for radioluminescence image 

enhancement. The whole framework consists of a generator (G), a discriminator (D) and 

three task-aware perceptual modules. The module networks pretrained for image 

classification were used to extract discriminative features between the weak labels and the 

generated images. The leaf-edge module imports low-level feature to discriminator for 

adversarial learning; leaf-end module outputs mid-level features for style learning; and the 

glare-region module outputs a complementary feature map, together with original x and y 
for content learning. By jointly optimizing on these modules, noise is removed from the 

synthesized images while high resolution is preserved.
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Figure 3. 
(a) An example CRIS image, (b) edge spread functions along the leaf end and inter-leaf 

boundary indicted with blue and red arrows in (a), and (c) feature maps (ℱi(x)) showing the 

representations on the desired structure. ℱi(x) is the integration over the output from the last 

convolutional layer before ith maxpooling in a pretrained VGG16.
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Figure 4. 
Architecture of the (a) generator and (b) discriminator subnetworks with corresponding 

kernel size (K), number of filters (N) and stride size (S) indicated for each convolution layer.
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Figure 5. 
Images with (a) circular and (b) comb-like shapes for composing the training datasets. The 

two kinds of beam shapes are intended for learning the intra-leaf and inter-leaf information, 

respectively.
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Figure 6. 
Demonstration of a CRIS enhanced image using cRI-GAN for a 6 × 6 cm2 beam case. (a) an 

original CRIS image, and (b) the enhanced CRIS image, (c) the EPID image acquired in the 

cine-mode, (d) the EPID image acquired in the integration-mode, (e) the gamma map (2%/2 

mm), and (f) gamma histogram. Images are displayed in logscale.
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Figure 7. 
Verification of enhanced CRIS image captured for a prostate IMRT case (Field 4). (a) The 

original CRIS image, (b) the enhanced CRIS image, (c) the EPID image acquired in the 

integration-mode, (d) the gamma map (2%/2mm), and (e) gamma histogram. Images are 

displayed in logscale.
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Figure 8. 
Verification of MLC leaf end positioning. (a) Geometric description of a rectangular beam 

with the black lines indicating the planned leaf end positions, (b) comparison between the 

leaf positions measured by CRIS and EPID (integration-mode) versus TPS planned values, 

and (c) a histogram showing the difference between CRIS and EPID measurement. Small 

displacements were designed to test the detection sensitivity.
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Figure 9. 
Training curves of the classic cRI-GAN versus modified versions.
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Figure 10. 
Comparison of images generated by ESR-GAN, Ea-GAN and our cRI-GAN. The proposed 

cRI-GAN outperforms the other models in noise suppression and preserving structures of 

leaf leakage and penumbra region.
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Table 1.

SNRs of the images acquired in the cine-mode EPID, the integration-mode EPID and our enhanced CRIS for a 

set of square fields.

Field sizes EPID (Cine) EPID(Integration) CRIS

2 × 2 cm2 16.40 55.87 51.31

4 × 4 cm2 25.75 77.51 82.76

6 × 6 cm2 33.29 56.52 60.11

8 × 8 cm2 41.47 89.00 93.74

10 × 10 cm2 50.14 70.25 63.52
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Table 2.

Quantitative evaluations on the enhanced and original CRIS images (in bracket) for a set of square fields.

Field sizes MSE PSNR (dB) SSIM (dB) γpass (2%/2 mm) γpass (1%/1 mm)

2 × 2 cm2 4.01 (13.60) 42.13 (36.81) 0.9900 (0.9581) 100% (98.2%) 96.9% (85.8%)

4 × 4 cm2 3.44 (58.50) 42.83 (30.46) 0.9904 (0.8238) 98.9% (97.7%) 84.1% (77.6%)

6 × 6 cm2 10.82 (90.63) 37.81 (28.56) 0.9849 (0.8958) 99.1% (97.0%) 82.3% (71.5%)

8 × 8 cm2 12.71 (191.84) 37.11 (25.30) 0.9935 (0.8328) 98.6% (88.7%) 79.4% (56.5%)

10 × 10 cm2 21.96 (251.23) 34.73 (24.13) 0.9939 (0.8977) 99.1% (42.3%) 73.1% (19.3%)
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Table 3.

Gamma analysis (2%/2 mm) for three IMRT cases.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Mean

Prostate 98.4% 99.5% 97.6% 97.4% 95.0% 99.4% 98.1% 97.9%

Brain 96.8% 97.9% 97.5% 94.7% 92.9% 97.9% N/A 96.3%

Lung 92.8% 98.3% 98.2% 97.4% 96.3% 99.4% N/A 97.1%
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Table 4.

Quantitative results of ablation experiments.

Loss comb. MSE SSIM PSNR (dB) γpass (1%/1mm)

ℒadv 1894.25 0.4209 13.2 46.2%

ℒadv + ℒstyl 49.84 0.9565 31.16 96.4%

ℒadv + ℒcont 138.89 0.90 26.70 84.5%

ℒadv 1059.61 0.3693 7.88 46.3%

ℒadv + ℒstyl 149.52 0.8940 26.44 77.4%

ℒadv + ℒcont + ℒstyl 44.69 0.9566 31.63 90.5%

ℒadv + ℒcont + ℒstyl (Classic) 30.41 0.9750 33.30 98.8%

ℒ means the loss is calculated in the image domain instead of the feature domain.
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Table 5.

Quantitative evaluations of the images in figure 9 processed using different models.

MSE SSIM PSNR (dB) γpass(1%/1 mm)

Raw CRIS 180.33 0.090 25.93 70.3%

ESR-GAN 168.34 0.6215 26.70 77.7%

Ea-GAN 64.39 0.9313 30.90 86.1%

cRI-GAN (ours) 57.85 0.9531 32.58 95.2%
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