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Abstract— Saliency detection is a fundamental and challenging
task in computer vision, which aims at distinguishing the most
conspicuous objects or regions in an image. Existing deep-
learning methods mainly rely on the entire image to learn
the global context information for saliency detection, which
loses the spatial relation and results in ambiguity in predicting
saliency maps. In this paper, we propose a novel deep sub-
region network (DSR-Net) equipped with a sequence of sub-
region dilated blocks (SRDB) by aggregating multi-scale salient
context information of multiple sub-regions, such that the global
context information from the whole image and local contexts from
sub-regions are fused together, making the saliency prediction
more accurate. Our SRDB separates the input feature map at
different layers of a convolutional neural network (CNN) into
different sub-regions and then designs a parallel ASPP module
to refine feature maps at each sub-region. Experiments on the five
widely-used saliency benchmark datasets demonstrate that our
network outperforms recent state-of-the-art saliency detectors
quantitatively and qualitatively on all the benchmarks.

Index Terms—Saliency detection, deep subregion learning,
region dilated blocks, parallel atrous spatial pyramid pooling
(ASPP) modules.

I. INTRODUCTION
ALIENCY detection aims at highlighting the most visu-
ally distinctive objects or regions from an image [1]-[5].
Served as a pre-processing step, inferring salient objects
plays an essential role in lots of computer vision appli-
cations, such as weakly supervised object detection [6],
object recognition [7], image and video compression [8],
[9], texture smoothing [10], and visual tracking [11], [12].
Saliency detection requires both an understanding of the whole

Manuscript received October 2, 2019; revised January 26, 2020 and
March 9, 2020; accepted April 10, 2020. Date of publication April 20, 2020;
date of current version February 4, 2021. This work was supported in part
by the National Natural Science Foundation of China under Grant 61671399,
in part by the National Natural Science Foundation of China under Grant
61902275, in part by the Fundamental Research Funds for the Central Uni-
versities under Grant 20720190012, in part by the Interdisciplinary Research
Scheme of the Dean’s Research Fund 2018-19 (FLASS/DRF/IDS-3) of The
Education University of Hong Kong, and in part by the HKIBS Research
Seed Fund 2019/20, Lingnan University, Hong Kong, under Grant 190-009.
This article was recommended by Associate Editor C. Shen. (Corresponding
author: Lei Zhu.)

Liansheng Wang and Rongzhen Chen are with the Department of Computer
Science, School of Informatics, Xiamen University, Xiamen 361005, China.

Lei Zhu and Xiaomeng Li are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
1zhu@cse.cuhk.edu.hk).

Haoran Xie is with the Department of Computing and Decision Sciences,
Lingnan University, Hong Kong.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2020.2988768

image and an accurate identification of the details of salient
regions. Hence, saliency detection is a challenging research
problem [13]-[16].

Early works designed hand-crafted features and heuristic
priors [17]-[19] to distinguish salient objects and non-salient
backgrounds from the input image. However, these methods
tend to fail in generating satisfactory results of saliency
detection since their human-designed features lack high-level
semantic information, which is required for inferring salient
objects. To alleviate this problem, fully convolutional neural
network (FCN) based methods have achieved remarkable
saliency detection results by learning convolutional features
at deep convolutional layers [20], [21] or integrating feature
maps at multiple layers [22]-[24] of a convolutional neural
network (CNN).

Recent CNN-based works detected salient objects by learn-
ing global contextual features [25], [26] for enlarging the
convolutional receptive fields, or adding extra boundary infor-
mation [27]-[30]. Although improving the saliency detec-
tion performance, these works fail in generating high-quality
saliency detection results on complex scenes, since the global
contextual features in these methods are directly learned from
the whole input image, which loses the spatial relations and
causes ambiguity for saliency detection. The global context
information along with local contexts together has demon-
strated to be more accurate and reliable by forming a more
powerful feature representation in many works, including
the classical bag-of-words based image classification [31],
the spatial pyramid pooling for visual recognition [32], and the
pyramid pooling module for semantic segmentation [33]. The
success of these works is the starting point of our network for
salient object detection.

In this paper, we propose a novel deep sub-region network
(denoted as DSR-Net) to produce more accurate predictions
for saliency detection by integrating saliency context features
from sub-regions. Intuitively, image sub-regions have less non-
salient details than the whole input image, and thus reduce
the interference from non-salient objects, making the saliency
prediction more accurate, especially for tiny salient objects
(see Fig. 1). To do so, the DSR-Net develops a sub-region
dilated block (SRDB) to refine the deep layers of a convo-
lutional neural network (CNN) by learning saliency context
information from multiple sub-regions with different receptive
fields, and then combining the refined features from multiple
deep CNN layers to generate the final prediction of our net-
work. Experiments on the five widely-used benchmark datasets
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Fig. 1. Sub-region observation. The Ist and 2nd rows show the separation
of the input image into four sub-regions (2 x 2), while the last two rows show
the separation scheme to nine sub-regions (3 x 3). Apparently, the salient
objects are more conspicuous in the sub-region due to alleviating non-salient
interference.

demonstrate that our network boosts the saliency detection
performance on all the five benchmarks, when compared to
recent state-of-the-art methods.

Overall, our main contributions are summarized as follows.

o First, we design the sub-region dilated block (SRDB) to
fuse the global contexts from the whole feature map and
local contexts from local sub-regions together for learning
more powerful features for salient object detection.

« Second, we develop a deep sub-region network equipped
with sequences of SRDBs to progressively refine features
at different CNN layers by learning context features from
multiple sub-regions with different receptive fields. Such
a sub-region based scheme is capable to learn more
powerful discriminative features and has the potential to
be adapted for other vision applications such as shadow
detection, object detection, and semantic segmentation.

o Third, we evaluate the effectiveness of our method on
five common benchmark datasets by comparing it against
26 state-of-the-art saliency detectors. Overall, our method
consistently has the best performance of detecting salient
objects on all the five benchmark datasets.

II. RELATED WORK

In this section, we aim to review methods for salient object
detection. Early attempts detected salient objects by exploiting
human-designed visual attributes (e.g, contrast [18], [34],
color [35], [36], texture [37], [38]) and some other low-level
visual cues [39]. Unfortunately, these methods often fail to
achieve convincing predictions since their hand-crafted priors
from human observations do not always hold in diverse real-
world photos.
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Motivated by the remarkable results of CNN in diverse
vision tasks, many methods [21], [40]-[43] have been pro-
posed by designing different convolutional neural networks
(CNNs) to detect salient objects in the past five years. It has
also become apparent that accounting for the advanced seman-
tic context brings more accurate detection of salient objects.
Zhao et al. [21] utilized a multi-context deep learning frame-
work to detect salient objects by taking both global and local
context into account. Li ef al. [40] proposed a multi-task CNN
framework to train two tasks (saliency detection and object
segmentation) for further boosting the feature representations
for salient objects. Zhang et al. [43] combined the R-dropout
technique with common convolutional operations to learn deep
uncertain features for saliency detection. However, since these
methods only leveraged the features from deep CNN layers to
generate the final prediction, their results are rough and have
a missing/ambiguous boundary.

In order to alleviate this issue, several works [22],
[23], [44] integrated deep and shallow layer features to gener-
ate a more refined prediction maps by leveraging the comple-
ment information among different CNN layers. Li and Yu [45]
utilized semantic properties of salient objects and visual
contrasts among multi-scale feature maps for salient object
detection. Hou et al. [22] utilized the short connections for
aggregating multi-level features. Wang er al. [46] conducted
the fixation prediction from a global/high-level view, built
another CNN for salient object detection from lower layers,
and combined them together for a better prediction of salient
objects. Later, Deng et al. [24] and Chen et al. [47] both
took advantage of efficient residual learning to progressively
refine the saliency map predictions by integrating features
at shallow and deep layers recurrently. In [26], an attention
guided mechanism was designed to selectively integrate multi-
level contextual information gradually. Starting from the same
point, Zhang et al. [48] similarly developed a bi-directional
message passing model to control the information flow during
the multi-level features integration.

Very recently, many CNNs focused on extracting global
context information [25], [49] to enlarge the convolutional
receptive fields, or adding extra information (e.g., the image
caption [50], and salient object boundaries [28]-[30], [50]
for salient object detection. Wang et al. [49] proposed a
recurrent module that integrates global contextual knowledge
as time evolves, to locate salient objects more accurately.
Liu et al. [25] generated the global/local attention contextual
maps for each pixels in the feature maps, in order to selectively
aggregating the global/local contextual information. On the
other hand, Wu et al. [29] presented a saliency detection
network by imposing the multi-task intertwined supervision
from not only saliency detection, but also foreground contour
detection and edge detection. Furthermore, Feng et al. [30]
designed a boundary-aware network, which consists of a
global perception module and a set of attentive feedback
modules for saliency prediction, as well as a boundary-
enhanced loss to assist the saliency detection on the object
boundaries. Qin er al. [28] proposed a predict-refine net-
work with a boundary-aware module and a hybrid fusing
loss for salient object detection. Zhang er al. [50] formulate
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The schematic illustration of the deep sub-region network equipped with SRDBs (see Figure 3 for the meaning of K). We empirically apply three

SRDBs in our network by balancing the time performance and the saliency detection accuracy.

a network by leveraging image captions to further extract the
semantic information to recognize salient objects. Although
the detection quality still keeps improving on the benchmarks
[20], [37], [38], [51]-[53], there exists a heavy loss of
local spatial semantic information. However, existing saliency
detection networks took the whole image as a consideration
and determined the salient objects mainly relying on global
semantic features, and thus failed to generate high-quality
saliency maps for complex scenes or tiny objects. To further
boost the saliency detection performance, we leverage the
global context features along with local contexts from multiple
sub-regions to learn a more powerful feature representation for
salient object detection.

III. OUR APPROACH

Fig. 2 shows the architecture of the developed deep sub-
region network(DSR-Net), which takes the whole image as
the input and predicts a saliency map as the output in an
end-to-end manner. DSR-Net first utilizes a CNN as the
feature extraction network to generate a set of feature maps
with different spatial resolutions. Then, at each CNN layer,
we design a sub-region dilated block (SRDB) to refine feature
map at previous layer by fusing the global context features
along with local contexts from sub-regions, and then merge
the output feature map with the features at the current layer
for the feature refinement. After that, we upsample the refined
features at different CNN layers to the 1/4 spatial size of
the input image and concatenate them for predicting the
saliency map, which is taken as the final output of our
network.

The key idea of our DSR-Net is to design different SRBDs
for learning more efficient semantic representations of salient
objects by fusing the global context information from the
whole feature map and local contexts from multiple sub-
regions. The SRDB first separates the whole feature map into
different sub-regions, and then designs a parallel atrous spatial
pyramid pooling (ASPP) block to extract local context features
from each sub-region, which are then merged with the input
features to generate the output feature map.

In the following subsections, we will elaborate on the
details of the sub-region dilated block (SRDB) in Section III-A
and the parallel ASPP block in Section III-B. Section III-C
summarizes the training and testing strategies of our network.

A. Sub-Region Dilated Block

Saliency detection is to seek the most conspicuous
objects or regions in an input image. Due to complicated
background scenarios in the input images, many non-salient
background regions weaken visual representations of salient
objects (especially for tiny targets (see Fig. 1)), and thus
largely affect the image understanding for inferring saliency
detection. Based on the observation that salient objects in sub-
regions becomes more conspicuous, we develop a sub-region
based convolutional neural network to boost the saliency
detection, since there are less interference from non-salient
backgrounds when using sub-region information for saliency
detection. Our network has sub-region dilated blocks (SRDBs;
see Fig. 3a) to refine feature maps at different CNN layers, and
the SRDB divides the whole feature map into multiple sub-
regions and then aggregates the context semantic information
from each sub-region.

Fig. 3a shows the schematic illustration of our sub-region
dilated block with a k x k region separations. Specifically,
given a 3D feature map M (size: h X w X ¢) from a particular
CNN layer, the sub-region block first separates M into k x k
sub-regions, where the size of features at each sub-region is
(h/k) x (w/k) x c. Then we design a parallel ASPP block
(see Section III-B for details) at each sub-region to learn more
obvious semantic features inside the sub-region, resulting in k2
(k2 = 4) feature maps (denoted as F1, Fa, F3,..., and F2,
respectively). Note that ASPP blocks do not share weights
in any sub-region in order to make them independent After
that, we employ two successive 3 x 3 convolutional layers
on M, and then a 1 x 1 convolutional layer to generate an
attention map W, which has k? channels. Each channel of W
are denoted as Wy, Wy, ..., and W;>. Note that we adopt the
ReLU activation function in the two 3 x 3 convolutional layers,
and the Sigmoid activation function in the 1 x 1 convolutional
layer.

Then, we multiply Wy and F{, W, and F»,..., W;2 and
F> in an element-wise manner, and compose these multipli-
cation resultant features to form a new feature map (J), which
is then concatenated with the input feature map M. Finally,
we use a 3 x 3 convolutional layer on the resultant feature
map to generate the output (denoted as M ) of our SRDB; see
Fig. 3(a). Mathematically, M is computed as

M = ®(w* Cat(M, J) + b) (1)
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(a) The schematic illustration of an example of our SRDB. Here, we divide the input feature map into K x K sub-regions and
K = 2. As shown in Figure 2, K is set as 1 and 3 in other CNN layer. Please refer to Figure 3b for the details of the parallel ASPP.
Note that W has four channels, and the four channels of W are corresponding to Wi, W, W3, and W;.
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(b) The schematic illustration of an example our parallel ASPP block, which connected a series of atrous convolution layers with
different dilated rates (denoted as r), and r = d, d—;, da, %2, ds, and %3.

Fig. 3.

The schematic illustration of the proposed sub-region dilated block (SRDB), which designs parallel ASPP blocks to learn multi-scale features from

each sub-region. Figure 3a shows the basic structure and Fig. 3b illustrates the details of parallel ASPP module. “depth” means the dilated convolution layer.

where Cat is the concatenation operation across the channel
direction; * represents the convolution operation; w and b are
the weights and bias of the 3 x 3 convolutional layer; and ®
is the ReLLU activation function in our implementation.

B. Parallel ASPP Block

Note that salient objects exhibit a very large scale change,
which indicates that multi-scale features are required to cover
the large scale range for inferring various salient objects.
Chen et al. [54] proposed an atrous spatial pyramid pooling
(ASPP) module for generating multi-scale features by con-
catenating multiple atrous convolution layers with different
large dilation rates, since the dilated convolution can generate
features with large receptive field but without sacrificing
spatial resolution. More recently, Yang ef al. [55] develop
a DenseASPP to densely cover scale range by connecting
atrous convolution layers in a dense manner [56]. Although the
two methods above can capture multi-scale features that cover
a large receptive field, both of them suffer from a“gridding
issue” [57], which means that many positions in large receptive

field windows are not used in the dilated convolutions, losing
many spatial neighborhood information. Fig. 4a show an
example of the gridding issue in the DenseASPP, and we can
observe that many elements in each dilated convolutional layer
are neglected for extracting multi-scale context features.
Note that most of feature positions are involved in the
dilated convolution if the dilated rate is smaller. Inspired
by this, we develop a parallel ASPP block to alleviate this
gridding problem by imposing additional dilated convolutional
layers (with small dilated rates) into each dilated layer (depth)
of the ASPP. Fig. 3b shows the diagram of our parallel ASPP
block. Specifically, we first employ three dilated convolutional
layers, and dilated rates (denoted as r) are dj, da, and d3. Then,
we add another dilated layer with a half dilated rate into each
depth (dilated convolutional layer), and then densely connect
them to form the output features of our parallel ASPP block.
As shown in Figure 2, we apply our sub-region dilated block
(SRDB) to refine features at the last three convolutional layers
by balancing the time performance and saliency detection
performance. And in each SRDB, we use the parallel ASPP
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(b) The diagram of ParallelASPP for the group of dilation rate: 2, 4, 6.

Fig. 4.

Comparison between DenseASPP and the parallel ASPP. Note that for each element at different dilated layers (depth), we use the while color for

unused elements and other three colors for used elements in learning the multi-scale feature representation. Apparently, our parallel ASPP can cover more

elements than the DenseASPP in each depth (dilated convolutional layer).

block with the same three dilated convolutional rates for each
sub-region of the SRDB. We empirically set the three dilated
rates (di, da, and d3) in the last three CNN layers are set as
(24 10), (24 8), and (2 4 6).

Our parallel ASPP block not only covers dense scale range,
but also uses more neighboring feature positions (or pixels)
for learning multi-scale feature representations for salient
object detection. Fig. 4b visualizes an example of our parallel
ASPP, which demonstrates that more elements (or feature
positions) are utilized for learning multi-scale features when
compared to the DenseASPP. Hence, our parallel ASPP can
learn more powerful multi-scale feature representations than
the DenseASPP, making the saliency map predictions more
accurate (see Section I'V-C for detailed comparisons).

C. Training and Testing Strategies

1) Training Parameters: In order to accelerate the training
process and reduce the over-fitting issue, we use the well-
trained DenseNet network on ImageNet [56] to initialize
parameters of feature extraction network (see Fig. 2), while
other layers are randomly initialized from a Gaussian dis-
tribution. We train our network on 2 GPUs (GTX 1080Ti)
with a mini-batch size of 8 and stop the training process
after 40k iterations. The stochastic gradient descent (SGD)
algorithm is employed to optimize the loss function of the
whole network by setting the momentum and the weight
decay as 0.9 and 0.00001, respectively. The initial learning
rate is set as 0.001 and it reduces by a factor of 0.1 at
15k iterations. We use an input size of 384 x 384 for each

image in the training/testing stages, and images in the training
dataset are randomly rotated, resized and horizontally flipped
for data argumentation. Figure 5 shows the details of the
feature extraction network of our method (see Figure 2).

2) Network Testing: In the testing stage, our network
predicts only a saliency map from the last CNN layer (see
Fig. 2) and use this prediction as the final result of our network.
We utilize 8 hours to train our network and the testing time
for a 400 x 400 image is about 0.067 second on a single GPU.

IV. EXPERIMENTAL RESULTS

In this section, we will introduce the benchmark datasets
and evaluation metrics, and present experiments to verify
our DSR-Net. Our code, the trained models, and the pre-
dicted saliency maps on all five benchmark datasets are at
https://github.com/Ball-Chen/DSR-Net.

A. Datasets and Evaluation Metrics

1) Benchmark Datasets: We used five widely-used saliency
benchmark datasets in our experiments: (i) ECSSD [37] has
1,000 natural images, which have semantically meaning-
ful but complex structures; (ii) PASCAL-S [51] consists of
850 images with several salient objects. (iii) HKU-IS [20]
has 4,447 images with multiple salient objects; (iv) DUT-
OMRON [38] has 5,168 images, and each image has
one or more salient objects (v) DUTS [53] contains a train-
ing set of 10,553 images and a testing set (denoted as
DUTS-test) of 5,019 images. Images in this dataset have
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operation oufput size

Input image 384x384x3
Stage 1 conv kemnel size: 77, stride = 2, channel = 64, ReLU 192x192x64
pooling kernel size: 3%3, maxpooling, stride = 2, ReLU 96x96x64

kernel size: 1 x 1,stride = 1, channel = 128, RelLU

dense block (kernel size:3 x 3,stride = 1, channel = 128, ReLU) 6 96x96%256

Stage 2 fransition block kernel size: 1x1, stride=1, channel=128, ReLU 96x96x128
pooling kernel size: 2x2 avg pooling, stride = 2, ReLU 48x48x128

kernel size: 1 x 1,stride = 1, channel = 128, ReLU

dense block (kernel size: 3 X 3 conv, stride = 1,channel = 32, ReLU) X 12 48x48+512

Stage 3 fransition block kernel size: 1x1, stride=1, channel=256, ReLU 48x48%256
pooling kernel size: 2x2, avg pooling, stride =2, ReLU 24x24%256

kernel size: 1 x 1, stride = 1, channel = 128, ReLU

dense block (kernel size:3 x 3 stride = 1, channel = 128,R9LU) x 24 24x24x1024

Stage 4 transition block kernel size: 1x1, stride=1, channel=512, ReLU 24x24%512

Fig. 5. The architecture details of the feature extraction network of our method. We use the pooling layer at each stage to reduce the size of feature maps.
TABLE I
COMPARISON WITH 26 STATE-OF-THE-ART METHODS IN TERMS OF F/g, Sm, AND MAE METRICS. THE TOP THREE RESULTS ARE HIGHLIGHTED IN
Red, Green, AND Blue, RESPECTIVELY. NOTE THAT “—” DENOTES THE METRIC RESULTS ON THE CORRESPONDING BENCHMARK DATASET IS

NOT PUBLICLY AVAILABLE, AND “*” MEANS THAT THE CONDITIONAL RANDOM FIELD (CRF) IS APPLIED AS
THE POST-PROCESSING STEP IN THE SALIENCY DETECTION METHODS

Method CRF ECSSD PASCAL-S HKU-IS DUT.S-TE DUT—OMRON
1,000 images 850 images 4,447 images 5,019 images 5,168 images
Fg | Sm |MAE| Fg | Sm |MAE| Fg | Sm |MAE| Fg | Sm |MAE| Fg | Sm |[MAE
DSR-Net (ours) | No [0.952{0.924|0.039 | 0.898 | 0.806 0.939]0.915|0.035 [ 0.895 | 0.871| 0.043 | 0.833 0.060
DSR-Net* (ours) | Yes 0.031 0.068 [ 0.939]0.915| 0.027 0.036 {0.811|0.829 | 0.053
PoolNet-R [27] | No [0.944]0.9210.039 |0.865|0.794 | 0.080 0.033 {0.886 | 0.871 0.836 | 0.056
BASNet [28] No |0.942(0.916 | 0.037 | 0.858 | 0.785 | 0.084 | 0.929 | 0.909 0.860]0.853 | 0.047 {0.811|0.836 | 0.056
CPD-R [58] No |0.939(0.918|0.037 | 0.861 | 0.789 | 0.078 | 0.925 | 0.906 | 0.034 | 0.865| 0.858 | 0.043 | 0.797 | 0.825 | 0.056
AFNet [30] No |0.935(0.917]0.042 | 0.866 | 0.792 | 0.076 | 0.925 | 0.905 | 0.036 | 0.867 | 0.855 | 0.045 | 0.820 | 0.826 | 0.057
MLMSNet [29] | No [0.930(0.909 | 0.045 | 0.858 [ 0.790 | 0.079 [ 0.922 | 0.906 | 0.039 [ 0.854 | 0.851 | 0.048 | 0.793 | 0.809 | 0.064
Pi-RC [25] Yes |0.940(0.916 0.88310.7900.077 {0.927]0.905| 0.031 | 0.866 | 0.849 0.804 | 0.826
RAS [47] Yes [0.916(0.893]0.058 [ 0.842|0.772]0.122 {0.913 | 0.887 | 0.045 | 0.831 | 0.838 | 0.059 | 0.785 | 0.814 | 0.063
C25 [59] Yes [0.911]0.896]0.053 | 0.845{0.793 | 0.084 | 0.898 | 0.889 | 0.046 | 0.811 | 0.831 | 0.062 {0.759|0.799 | 0.072
R3Net [24] Yes |0.935(0.908 | 0.040 | 0.845|0.750 | 0.100 | 0.916 | 0.895 | 0.036 | 0.833 | 0.817 | 0.058 | 0.805 | 0.812 | 0.063
PAGRN [26] Yes |0.928(0.889 | 0.044 | 0.862{0.792|0.094 | 0.918 | 0.887 | 0.048 | 0.854 | 0.837 | 0.055 {0.771 | 0.775| 0.071
DGRL [49] Yes |0.925{0.906 | 0.045|0.850 {0.796 | 0.080 | 0.914 | 0.897 | 0.037 | 0.834 | 0.845| 0.051 | 0.785 | 0.810 | 0.060
LPS [60] Yes |0.910{0.888 | 0.054 | 0.805|0.786 | 0.093 | 0.903 | 0.874 | 0.033 | 0.800 | 0.797 | 0.054 | 0.734 | 0.786 | 0.070
RADF [23] Yes |0.924|0.894|0.049|0.832|0.754 | 0.102 | 0.914 | 0.889 | 0.039 | 0.819 | 0.814 | 0.061 | 0.789 | 0.815| 0.060
SRM [61] Yes |0.917(0.895 | 0.054 | 0.847|0.782 | 0.085 | 0.906 | 0.887 | 0.046 | 0.827 | 0.835 | 0.059 | 0.769 | 0.798 | 0.069
DSS [22] Yes |0.916(0.882 | 0.053 | 0.836 |0.777 | 0.096 | 0.910 | 0.881 | 0.041 | 0.825 | 0.822| 0.057 | 0.771 | 0.788 | 0.066
Amulet [44] Yes |0.915(0.894 | 0.059 | 0.837|0.794 | 0.098 | 0.895 | 0.883 | 0.052 | 0.778 | 0.803 | 0.085 | 0.743 | 0.781 | 0.090
UCEF [43] Yes |0.911|0.883 | 0.078]0.828 |0.792 | 0.126 | 0.886 | 0.875| 0.074 | 0.771|0.777|0.117 | 0.771 | 0.758 | 0.117
NLDF [41] Yes |0.905|0.875|0.063 | 0.831|0.790 | 0.099 | 0.902 | 0.879 | 0.048 | 0.812 | 0.815| 0.066 | 0.753 | 0.770 | 0.080
DHSNet [62] | Yes [0.907|0.884|0.059 [0.829{0.788|0.094 | 0.890 | 0.881 | 0.053 | 0.807 | 0.836 | 0.067 | - - -
DCL [45] Yes |0.890|0.868 | 0.088 | 0.805|0.783 | 0.125 | 0.885 | 0.861 | 0.072 | 0.782 | 0.795| 0.088 | 0.739 | 0.764 | 0.157
ELD [63] Yes |0.867(0.841(0.079]0.773| - [0.123]0.839| - |0.074|0.738(0.719|0.093|0.719|0.751|0.091
RFCN [42] Yes |0.890{0.860 | 0.107]0.837{0.793 | 0.118 | 0.892|0.859 | 0.079 | 0.784 | 0.791 | 0.091 | 0.738 | 0.774 | 0.095
LEGS [64] Yes |0.827(0.787|0.1180.762|0.682 | 0.155 | 0.766| - |0.119]0.655| - |0.138|0.669| - |0.133
MDF [20] Yes [0.832]0.776|0.105 [ 0.768 | 0.672| 0.146 | - - - 10.730]0.727 | 0.094 | 0.694 | 0.721 | 0.092
DRFI [18] No |0.786| - ]0.164|0.698| - ]0.207|0.777| - ]0.145|0.647| - |0.175| - - -
BSCA [65] No [0.758 0.725|0.182 | 0.667 | 0.633 | 0.223 | 0.719 | 0.700 | 0.175 | 0.597 | 0.630 | 0.197 | 0.616 | 0.652 | 0.191

multiple salient objects with different region sizes. Following
recent works [25], [26], [48], [49], we use the training set of
DUTS [53] for training our network.

2) Evaluation Metrics: We adopt several widely-used met-
rics to quantitatively evaluate the performance of different
saliency models, and they are the precision-recall curves

(denoted as PR curves), F-measure (denoted as Fg), S-measure
(denoted as S§,,), mean absolute error (denoted as MAE),
weighted F-measure (denoted as wFy [66]), AUC [67], and
E-measure (denoted as E, [68]). Overall, a better saliency
detector shall have a larger Fj, a larger S, a smaller MAE,
a larger wFpg, and a larger Sy,.
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TABLE 11
COMPARISON WITH MORE RECENT STATE-OF-THE-ART METHODS IN TERMS OF wFﬂ AND E,;; METRICS. THE TOP THREE RESULTS ARE HIGHLIGHTED
IN Red, Green, AND Blue, RESPECTIVELY. NOTE THAT “—" DENOTES THE METRIC RESULTS ON THE CORRESPONDING BENCHMARK

DATASET IS NOT PUBLICLY AVAILABLE, AND “*” MEANS THAT THE CRF IS APPLIED AS THE
POST-PROCESSING STEP IN THE SALIENCY DETECTION METHODS

Method CRF ECSSD PAS_CAL-S HKU-IS DUTS—TE DUT—O.MRON

1,000 images 850 images 4,447 images 5,019 images 5,168 images

wlg [AUC | By [wFg | AUC | Eny |wEg | AUC | Eyy |wF3 |AUC | By |wFg [ AUC | Eny
DSR-Net (ours) | No |0.891]0.9514|0.805]0.780]0.9003 | 0.787 ] 0.872|0.9529 | 0.798 | 0.786 | 0.9303 | 0.725] 0.708 | 0.8978 | 0.677
DSR-Net* (ours) | Yes [0.9180.9687 | 0.953 | 0.796 | 0.9249 [ 0.850 | 0.905 | 0.9743 | 0.954 | 0.825 | 0.9651 | 0.918 0.9339|0.861
PoolNet-R [27] | No [0.896 0.8480.77310.9108 | 0.811|0.878 | 0.9665 | 0.859 | 0.797 0.781]0.725 0.739
BASNet [28] No [0.904|0.9471|0.938 | 0.774 | 0.8885 | 0.834 | 0.880 | 0.9538|0.935|0.793|0.9311 | 0.886 | 0.751 | 0.9101 | 0.857
CPD-R [58] No [0.898]0.9583{0.902{0.767 | 0.9020 | 0.827 | 0.875]0.9607 | 0.888 | 0.787 [ 0.9428 | 0.837 | 0.719 | 0.9090 | 0.788
AFNet [30] No [0.886]0.9580|0.849|0.7770.9083 | 0.810 | 0.869 | 0.9651 | 0.839 | 0.776 | 0.9480 | 0.785|0.714 | 0.9173 | 0.760
MLMSNet [29] | No |{0.871]0.9602|0.830|0.766 | 0.9086 | 0.796 | 0.859 | 0.9691 | 0.826 | 0.754 | 0.9544 | 0.761 | 0.680 | 0.9074 | 0.761

Pi-RC [25] Yes 0.9502 0.8950 0.9505 0.9235 0.74310.8977
C25 [59] Yes |0.854]0.9560 | 0.861]0.763 | 0.9136 | 0.819 [ 0.835 | 0.9652 | 0.844 | 0.713 | 0.9434 | 0.767 | 0.663 | 0.9164 | 0.730
R3Net [24] Yes |0.901]0.9454 |0.942|0.735|0.8673 | 0.802 | 0.877 | 0.9526 | 0.934 | 0.751 | 0.9031 | 0.872 | 0.721 | 0.9003 | 0.837
PAGRN [26] Yes |0.834]0.9602 | 0.559|0.693|0.8847|0.592|0.819 | 0.9558 | 0.506 | 0.715 | 0.9295 | 0.613 | 0.622 | 0.8723 | 0.604
DGRL [49] Yes | 0.883[0.9510[0.868 | 0.7800.9003 | 0.809 | 0.865 | 0.9564 | 0.856 | 0.753 [ 0.9294 | 0.789 | 0.697 | 0.8990 | 0.754
LPS [60] Yes |0.8530.9507 | 0.838 |0.764 | 0.9086 | 0.783 | 0.837 | 0.9483 | 0.861 | 0.703 | 0.9262 | 0.764 | 0.673 | 0.9171 | 0.720
RADF [23] Yes | 0.883[0.9363[0.922]0.741|0.8660 | 0.802 | 0.872{0.9454 | 0.920 | 0.740 | 0.9165 | 0.846 | 0.722 | 0.9142 | 0.828
SRM [61] Yes [0.853]0.9572|0.817]0.745{0.9102 | 0.776 | 0.835 | 0.9648 | 0.800 | 0.714 | 0.9427 | 0.710 | 0.658 | 0.9130 | 0.677
DSS [22] Yes |0.870]0.9232|0.921|0.726 | 0.8464 | 0.796 | 0.865 | 0.9317 | 0.929 | 0.746 | 0.8993 | 0.871 | 0.695 | 0.8542 | 0.838
Amulet [44] Yes | 0.848(0.9317]0.917|0.755 0.680 | 0.766 0.666 | 0.655 [ 0.9461 | 0.576 | 0.654 | 0.9042 | 0.781
UCF [43] Yes |0.789| - ]0456|0.731| - |0.617{0.779] - [0.577]0.596| - ]0.379]0.564| - ]0.345
NLDF [41] Yes |0.839]0.9390 | 0.881|0.727|0.9224 | 0.837 | 0.838 | 0.9533 | 0.885| 0.701 | 0.9271 | 0.777 | 0.634 | 0.8952 | 0.735
TABLE III

Given a predicted saliency map (denoted as D), we can
obtain binarized saliency maps with a set of thresholds in [0, 1]
and produce a pair of precision and recall scores by comparing
each binarized map against the ground truth (denoted as G).
The precision scores compute the percentage of salient pixels

COMPARISON WITH THE STATE-OF-THE-ARTS ON THE RECENT SOC
DATASET [72]. THE TOP THREE RESULTS ARE HIGHLIGHTED IN
Red, Green, AND Blue. “*” MEANS THAT THE CRF Is
USED AS THE POST-PROCESSING

being correctly detected while the recall scores show the ratio Method ” = SOC . STAE
between detected salient pixctls and salient pixels in the ground Ours (DSR-Ned 0‘81845 0.7;%7 kel 0.0913
truth. The PR curve describes the model performance by Ours (DSR-Net?) 0.7979 | 0.7914 | 0.7131 | 0.0838
plotting all the pairs of averaged precision and recall pairs of Deepside-joint-fusion [71] 0.6648
all images in the dataset; see Fig. 7 for comparisons among R%Net [24] 0.6960 | 0.6820 | 0.7480 | 0.1350
different saliency detections on the five benchmark datasets. DGR [49] 0.7200 | 0.7728 | 0.6211 | 0.1012
SRM [61] 0.7071 | 0.7632 | 0.6147 | 0.1074
The AUC (.Area Undf.:r ROC Cur\{e). score can be comPute.d NLDF [41] 06663 1 07232 1 05774 | 0.1285
from a receiver operating characteristic (ROC) curve, which is RFCN [42] 0.6581 | 0.7180 | 0.5797 [ 0.1276
estimated according to the true positive rates and false positive DHS [62] 0.6844 | 0.7354 | 0.6103 | 0.1123
rates obtained during plotting the PR curve; see [67] for AUC DSS [22] 0.6284 | 0.6726 | 0.5625 | 0.1411
DCL [45] 0.6440 | 0.6960 | 0.5570 | 0.1373

details. F-measure (Fp) balances the average precision and
average recall over saliency maps of all images in the dataset:

MAE [34] computes the similarity of D and G by directly

(14 p?) x Precision x Recall
= averaging the pixel-wise absolute difference between them:

Fp =
f B?% x Precision + Recall

2)

where ﬂz = 0.3; see [22], [69]. Instead of plotting the
whole F-measure, we follow existing works [22], [24], [25]
to directly use the maximal Fy for comparisons.

S-measure [70] (S,) quantitatively compare D against G
by considering its object-aware and region-aware structural
similarities:

1 U Vv
MAE = =3 > D, v) = G, v)],
u=1ov=1
where U and V are the width and height of G.
Weighted F-measure [66] (wFjp) provides a generalized
F-measure by extending the precision and recall scores to real
values with different weights:

4)

Sm=oa x S,(D, g) + (1 - a) x S (D, g) (3)

where S,(D, G) and S,(D, G) denote the object-aware and

(I + y2) x Precision® x Recall®

wkp

)

y2 x Precision® 4 Recall®

region-aware structural similarities, respectively; see [70].
o = 0.5, as suggested in [70].

where Precision” and Recall® are the weighted preci-
sion and recall scores and weights assigned at different
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Visual comparison of saliency map results produced by different methods. (a) Input images (one salient objects) with different complex scenarios;

(b) Ground truths (denoted as ‘GT’); (c)-(h) Saliency maps predicted by our method, PoolNet-R [27], BASNet [28], CPD-R [58], AFNet [30], and
MLMSNet [29]. Apparently, our network produces more accurate saliency maps than other methods. Note that “*” denotes the CRF is used as the

post-processing in the methods.

locations are computed by considering neighborhood infor-
mation. y2 = 0.3, as suggested in [66], [71].

E-measure (E,,) [68] compares D and G by simultaneously
considering the global means of the image and the local pixel
matching:

U

\%
En =g 220w, 0), ©)

u=1o0=1

where © denotes the enhanced alignment matrix, which rep-
resents the correlation between D and G; please see [68] for
the details of computing ©.

B. Comparison With the State-of-the-Arts

We evaluate the effectiveness of our network by compar-
ing it against 26 state-of-the-art salient object detectors; see
the first column in Table I for the list of our competitors.
Among the 26 methods, BSCA [65] and DRFI [18] utilize
hand-crafted features to infer the salient objects, while other
methods formulate different network models to learn the deep
convolutional features for identifying salient objects from the
single input image. To make the comparisons fair, we obtained
the saliency maps of all 26 competitors either from the

authors or by using their implementations with the released
training models and parameters.

1) Quantitative Comparison: Table I summaries the Fg, Sy,
and MAE results of our method and 26 competitors in all the
five benchmark datasets, while Table II compares w F, AUC,
and E,, results of different methods. Apparently, our DSR-Net
consistently outperforms other saliency detectors on almost all
the five benchmark datasets. Furthermore, our method with
CRF has more accurate results than all compared saliency
detectors on the three largest datasets (“HKU-IS”, “DUT-
OMRON” and “DUTS-test”), which contain more complex
and multiple salient objects. It demonstrates that our method
can better handle challenging cases of saliency detection;
please refer to Figure 6 and Figure 8 for visual comparisons
of different predicted saliency maps.

2) Visual Comparison: We also visualize the saliency maps
produced by our network and state-of-the-art methods; see
Figures 6 and 8 for examples. As shown in these two
figures, other methods (d)-(h) tend to include non-salient
backgrounds or lose salient details in their predicted saliency
maps, while our DSR-Net predicts more accurate saliency
maps (c¢), which are more consistent with the ground truths (b).
Furthermore, for those challenging cases with small salient

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 16,2022 at 13:56:44 UTC from IEEE Xplore. Restrictions apply.



736

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL.

31, NO. 2, FEBRUARY 2021

—Ours —Ours 0.8 |—Ours
0.8 | PoolNet-R 0.8 | PoolNet-R — PoolNet-R
——BASNet ——BASNet ——BASNet
5 ——CPD 5 ——CPD 5 06r|——CPD
206 AFNet 206 AFNet 2 AFNet
o - —-MLMS o - —-MLMS o ~—-MLMS
- ~—-Pi-RC - ~—-Pi-RC @041 pirC
——BDMPM ——BDMPM ——BDMPM
04 ASNet 04 ASNet 02 ASNet
- —-PAGRN - —-PAGRN - —-PAGRN
- —-DGRL - —-DGRL -~ -DGRL
0.2 0.2 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall Recall
(a) ECSSD (b) PASCAL-S (c) HKU-IS
1 1
0.8}|—Ours 0.8F|—Ours
——PoolNet-R ——PoolNet-R
——BASNet ——BASNet
§06r|—cpPD 5067 |—CPD
g AFNet % AFNet
o} - —-MLMS o ~—-MLMS
@04 __pire @ 0.4~ piRe
——BDMPM ——BDMPM
0.2 PAGRN 02 ASNet
- —-DGRL ——-PAGRN
~—-LPS ——-DGRL
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall
(d) DUT-OMRON (e) DUTS-test
Fig. 7. Visual comparison of the precision-recall (PR) curves on the five widely-used saliency detection datasets: (a) ECSSD; (b) PASCAL-S; (c) HKU-IS;

(d) DUT-OMRON; and (e) DUTS-test.

TABLE IV

COMPONENT ANALYSIS IN TERMS OF F/g, Sm, AND MAE METRICS. NOTE THAT “SR” DENOTES “SUB-REGION,” AND “PB”
DENOTES THE USE OF PARALLEL ASPP BLOCK. “*” MEANS THAT THE CRF IS USED AS THE POST-PROCESSING

Sub-regions | Parallel-Block | Training time (hours) ECSSD PASCAL-S HKU-IS DUTS-test DUT-OMRON
Fg Sm | MAE | F3 Sm_ | MAE | F3 Sm_ | MAE Fg Sm_ | MAE | Fjs Sm_ | MAE
Basic* X X 213 0.943 | 0.908 | 0.039 | 0.884 | 0.781 | 0.077 | 0.932 [ 0.900 | 0.032 | 0.881 | 0.849 [ 0.039 | 0.800 | 0.816 | 0.055
Ours-w/o0-PB* vV X 4.09 0.948 ] 0.919 [ 0.033 | 0.886 | 0.792 | 0.068 | 0.938 | 0.913 [ 0.028 [ 0.889 | 0.861 | 0.037 | 0.808 | 0.826 | 0.054
Ours-w/0-SR* X vV 276 0.948 | 0.918 | 0.033 | 0.886 | 0.793 | 0.068 | 0.938 | 0.912 | 0.027 | 0.889 | 0.859 | 0.044 | 0.806 | 0.824 | 0.054
Ours-denseASPP* vV X 4.27 0.934 | 0.899 | 0.043 | 0.870 | 0.781 | 0.076 | 0.922 [ 0.894 | 0.033 | 0.855 | 0.827 [ 0.044 | 0.763 | 0.787 | 0.063
DSR-Net* (ours) vV N 3.91 0.950 | 0.922 | 0.031 | 0.888 | 0.798 | 0.068 | 0.939 | 0.915 | 0.027 | 0.891 | 0.863 | 0.036 | 0.811 | 0.829 | 0.053

objects (1st~3rd rows in Figure 8), and multiple salient objects
(4-th~10-th rows in Figure 8), our network also produces bet-
ter saliency detection results over our competitors. It indicates
that learning sub-region features in our network can highly
suppress the saliency inference corruptions from non-salient
objects, which are coupled with salient ones in other methods
for detecting salient objects. Please refer to the supplementary
material for more visual comparisons.

3) PR Curves: Apart from the five quantitative metrics
(Fg, Sm, MAE, wkFp, and E,,), Fig. 7 compares the PR
curves of different saliency detectors on the five common
saliency detection benchmark datasets to further evaluate the
effectiveness of the developed network. By observing PR
curves of different networks, our method (red ones) has a
better PR curve performance than all competitors. Moreover,
as the recall score goes to 1, our method has larger precision
value than other competitors, which demonstrates that our
method achieves lower false positives.

4) SOC Dataset: Recently, Fan ef al. [72] released a more
challenging SOC dataset about saliency detection. Follow-
ing [71], we test the trained network on 2,400 images of
the SOC. Table III reports the four quantitative metrics of
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our network and other saliency detectors on the SOC dataset.
Apparently, our method has a superior metric performance
over compared saliency detectors, demonstrating that our
method more accurately identifies saliency objects of the SOC
dataset.

C. Ablation Study

We conducted an ablation study experiment to verify the
effectiveness of two major components of our network by
considering four baseline networks. The first baseline (denoted
as “Basic”) is to remove the sub-region module and the parallel
ASPP module from our network. The second one (denoted
as “Ours-w/o-PB”) is constructed by removing the parallel
ASPP module from the whole network while the third one
(denoted as “Ours-w/0-SR”) is built by eliminating the sub-
region module from our method. The last baseline (denoted as
“Ours-denseASPP”) is to replace our parallel ASPP module
with the original dense ASPP module to verify the parallel
ASPP module.

We test the four baselines and our method on all the five
benchmark datasets, and Table IV and Table V report the
quantitative comparisons in terms of five metrics including
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Fig. 8. More visual comparison results on input photos, which have small or multiple salient objects.
TABLE V

COMPONENT ANALYSIS IN TERMS OF wFg, AUC, AND Ej;; METRICS. NOTE THAT “SR” DENOTES “SUB-REGION,” AND “PB”
DENOTES THE USE OF PARALLEL ASPP BLOCK. “*” MEANS THAT THE CRF IS USED AS THE POST-PROCESSING

Sub-regions | Parallel-Block | Training time (hours) ECS,SD PASCAL_S HKU-IS DUTS:test DUT—OMRON
wFg AUC Em wFg AUC Em wFg AUC Em wkFg AUC Em wkFp AUC Em
Basic* X X 213 0.903 [ 0.9456 | 0.947 | 0.773 [ 0.8890 | 0.843 | 0.890 | 0.9462 | 0.951 | 0.805 | 0.9238 | 0.913 | 0.728 | 0.8876 | 0.860
Ours-w/o-PB* vV X 4.09 0.915 [ 0.9517 | 0.950 | 0.788 [ 0.8968 | 0.845 | 0.904 | 0.9541 | 0.953 | 0.822 | 0.9310 [ 0.917 | 0.742 | 0.8974 [ 0.858
Ours-w/0-SR* X Vv 276 0.914 [ 0.9508 | 0.950 | 0.790 [ 0.8977 | 0.848 | 0.902 [ 0.9537 | 0.954 | 0.819 | 0.9308 [ 0.917 | 0.740 | 0.8967 [ 0.861
Ours-denseASPP* vV X 4.27 0.888 | 0.9364 | 0.935 | 0.772 [ 0.8859 | 0.842 | 0.878 | 0.9388 | 0.941 | 0.767 | 0.9309 | 0.887 | 0.680 | 0.8653 | 0.825
DSR-Net* (ours) vV Vv 3.91 0.918 | 0.9518 | 0.953 | 0.796 | 0.9014 | 0.850 | 0.905 | 0.9543 | 0.954 | 0.825 | 0.9315 | 0.918 | 0.747 | 0.9005 | 0.861

Fg, Su, MAE, wFg, AUC, and E,,. Obviously, our method
has a better performance than “Ours-w/o-PB” and “Ours-
w/0-SR”, demonstrating that both our sub-region module and
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the parallel ASPP module contribute the superior saliency
detection results of our network. Furthermore, our method
predicts more accurate saliency maps than “Ours-dense ASPP”,
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(c) ours*
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TABLE VI
ANALYSIS ON THE NUMBER OF THE SRDB IN TERMS OF Fp, AND MAE METRICS. “*” MEANS THAT THE CRF IS USED AS THE POST-PROCESSING

(f) Ours-w /0-SR*

Visual comparisons on saliency detection results produced by different networks in the ablation study experiment.

(g) Basic*

SRDB number | Training time (hours) ECSSD PASCAL-S HKU-IS DUTS-test DUT-OMRON

F; | MAE | F; | MAE | F, [ MAE | Fz; [ MAE | F; [ MAE

ours-2srdb* 2 296 0.9483 | 0.0319 | 08871 | 0.0687 | 0.9359 | 0.0278 | 0.8861 | 0.0369 | 0.8073 | 0.0542

ours-4srdb” 1 641 0.9475 | 0.032 | 0.8858 | 0.0688 | 0.9342 | 0.0281 | 0.8836 | 0.0370 | 0.8047 | 0.0539

DSR-Net* (ours) 3 391 0950 | 0.031 | 0.888 | 0.068 | 0.939 | 0.027 | 0.891 | 0.036 | 0.811 | 0.053
TABLE VII

ANALYSIS ON THE NUMBER OF DILATED LAYERS OF THE PARALLEL ASPP MODULE IN TERMS OF Flg, AND MAE METRICS

dilated layer number | Training time (hours) ECS5D PASCALS HKUIS DUTS-test DUT-OMRON

F; | MAE | F; [ MAE | F; [ MAE | F; [ MAE | F; [ MAE

ours-2dl* 2 316 0.9474 | 00333 | 08843 | 0.0703 | 09380 | 0.0279 | 0.8520 | 0.0393 | 0.8084 | 0.0576

ours-4dF* 1 5.10 0.9488 | 0.328 | 08852 | 0.0695 | 09377 | 0.0280 | 0.8863 | 0.0374 | 0.8079 | 0.0548

DSR-Net* (ours) 3 391 0950 | 0.031 | 0.888 | 0.068 | 039 | 0.027 | 0.891 | 0.036 | 0.811 | 0.053
TABLE VIII TABLE IX

COMPUTATIONAL COST ANALYSIS OF THE ABLATION STUDY

models input size | parameter number | model memory (MB) | FLOPs (GFLOPs)
Basic* 384 x 384 18,872,513 73 54.154
Ours-w/0-PB* 384 x 384 40,117,185 155 83.541
Ours-w/0-SR* 384 x 384 40,622,017 156 122.274
Ours-denseASPP* | 384x 384 5,641,601 23 31.209
DSR-Net* (ours) 384x 384 75,290,703 290 165.367

which shows that our parallel ASPP module learns a more
powerful feature representations than the original Dense ASPP
for salient object detection.

In addition, Figure 9 visualizes the saliency maps predicted
by our method and the four baseline networks. As shown in
this figure, the four baselines tend to include many non-salient
objects or miss salient object boundaries when inferring salient
objects. On contrast, our method can predict more accurate
saliency maps, which are most consistent with the ground truth
(see Figure 9(b)).

D. Parameter Discussion

1) Computational Cost: Table VIII presents an analysis on
the computational cost of all the experimental setting of the
ablation study. Apparently, the model size is increased when

COMPARISON WITH THE STATE-OF-THE-ARTS ON THE
MSD MIRROR DETECTION DATASET

MSD
Method T oo
DSS [22] 0.743 | 0.665
Pi-RC [25] 0.808 | 0.844
RAS [47] 0.758 | 0.695
MirrorNet [73] 0.841 | 0.932

[Ours (DSR-Neb) | 0.826 | 0.908 |

adding the subregions and the parallel ASPP modules into
our network. However, as shown in Tables IV and V, the SRDB
and the parallel ASPP modules enhance the saliency detection
performance in the five benchmark datasets.

2) The Number of SRDB: We first construct two networks
by setting the number of SRDB blocks in our network as 2
and 4, which are denoted as “ours-2srdb” and “ours-4srdb”.
Table VI reports the quantitative results on the five benchmark
datasets. Apparently, the training time of our method is larger
than “ours-4srdb”, and our training time is smaller than “ours-
2srdb”. Meanwhile, our method outperforms “ours-2srdb” and
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(a) inputs

(b) ground truths

(c) Our results

Fig. 10. Three failure cases of our method.

“ours-4srdb” in Fp and M AE, demonstrating that our method
can better detect salient objects. Hence, we empirically set the
number of SRDB as 3 in our DSR-Net.

3) The Number of Dilated Layers in Parallel ASPP: Another
two networks are constructed by setting the number of dilated
layers of the parallel ASPP as 2 (denoted as “ours-2dl”) and
4 (denoted as “ours-4dl”). As shown in Table VII, our method
also has a superior Fg and MAE performance than “ours-
2d1” and “ours-4dl” on the five benchmark datasets, which
demonstrates that more saliency detection accuracy is achieved
when setting the dilated layer number as 3. As a result,
we empirically use three dilated layers in all the parallel ASPP
modules of our method.

E. More Discussions

1) Failure Cases: Although obtaining superior saliency
detection performance on the five benchmarks, our method
also has the failure cases, for which we found to be challeng-
ing also for the state-of-the-art salient object detectors. For
instance, our method may fail for (i) multiple salient objects in
very different scales (see Figure 10 (top)), where the network
may lose several objects; (ii) salient objects with complex
salient object boundaries (see Figure 10 (middle)), where there
are insufficient context to fully detect those boundaries; and
(iii) salient objects with many non-salient inner holes (see
Figure 10 (bottom)), where our method may regard those
inner holes as salient objects. Addressing those failure cases
is regarded as a future direction of our work.

2) Application: Our network also has its applications. Here,
we take the mirror detection as an example. Note that Mirror-
Net [73] has released a MSD dataset of the mirror detection.
Following MirrorNet, we retrain our network on the MSD
training set and test the trained model on the MSD testing set
for comparisons. Table IX shows the metric values (in terms
of Fg and Acc) of our network and other methods (including
three saliency detectors and the MirrorNet). As can be seen,

our method has a superior metric performance over other
saliency detectors for the mirror detection application, but has
not better metric results than MirrorNet, which is dedicated for
the mirror detection by considering the mirror characteristics.

V. CONCLUSION

This paper presents a novel deep neural network for boost-
ing the saliency detection from an input image. Our key idea
is to separate the whole image into several sub-regions to
eliminate the interference from many non-salient regions of
the input image, design a parallel ASPP module to enlarge the
receptive field for predicting the saliency maps in each sub-
region, and then aggregate the saliency predictions from all
the sub-regions for generating final saliency predictions of our
network. Experiments on five widely-used saliency detection
benchmark datasets demonstrate that our method consistently
outperforms recent state-of-the-art saliency detectors on all the
benchmark datasets.
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