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Abstract— Computed tomography (CT) has been widely
used for medical diagnosis, assessment, and therapy plan-
ning and guidance. In reality, CT images may be affected
adversely in the presence of metallic objects, which could
lead to severe metal artifacts and influence clinical diagno-
sis or dose calculation in radiation therapy. In this article,
we propose a generalizable framework for metal artifact
reduction (MAR) by simultaneously leveraging the advan-
tages of image domain and sinogram domain-based MAR
techniques. We formulate our framework as a sinogram
completion problem and train a neural network (SinoNet) to
restore the metal-affected projections. To improve the conti-
nuity of the completed projections at the boundary of metal
trace and thus alleviate new artifacts in the reconstructed
CT images, we train another neural network (PriorNet) to
generate a good prior image to guide sinogram learning,
and further design a novel residual sinogram learning strat-
egy to effectively utilize the prior image information for
better sinogram completion. The two networks are jointly
trained in an end-to-end fashion with a differentiable forward
projection (FP) operation so that the prior image genera-
tion and deep sinogram completion procedures can benefit
from each other. Finally, the artifact-reduced CT images
are reconstructed using the filtered backward projection
(FBP) from the completed sinogram. Extensive experiments
on simulated and real artifacts data demonstrate that our
method produces superior artifact-reduced results while
preserving the anatomical structures and outperforms other
MAR methods.

Index Terms— Metal artifact reduction, sinogram comple-
tion, prior image, residual learning, deep learning.

I. INTRODUCTION

COMPUTED tomography (CT) systems have become an
important tool for medical diagnosis, assessment, and

therapy planning and guidance. However, the metallic implants
within the patients, e.g., dental fillings and hip prostheses,
would lead to missing data in X-ray projections and cause
strong star-shape or streak artifacts to the reconstructed CT
images [1]. Those metal artifacts not only present undesir-
able visual effects in CT images with influencing diagno-
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sis but also make dose calculation problematic in radiation
therapy [2], [3]. With the increasing use of metallic implants,
how to reduce metal artifacts has become an important prob-
lem in CT imaging [4].

Numerous metal artifact reduction (MAR) methods have
been proposed in the past decades, while there is no stan-
dard solution in clinical practice [3], [5], [6]. Since the
metal artifacts are structured and non-local in the recon-
structed CT images, the previous metal artifact reduction
approaches mainly addressed this problem in the X-ray projec-
tions (sinogram). The metal-affected regions in the sinogram
domain were corrected by modeling the underlying physical
effects of imaging [7]–[10]. For example, Park et al. [10]
proposed a method to correct beam hardening artifacts caused
by the presence of metal in polychromatic X-ray CT. However,
with the presence of high-atom number metals, the metal trace
regions in sinogram are often severely corrupted and the above
methods are limited in achieving satisfactory results [11].
Therefore, the other MAR methods regarded the metal-
affected regions as the missing areas and filled them with
estimated values [2], [12]. The early Linear interpolation (LI)
approach [2] filled the missing regions by the linear interpo-
lation of its neighboring unaffected data for each projection
view. As interpolation cannot completely recover the metal
trace information, the inconsistency between interpolated val-
ues and those unaffected values often results in strong new
artifacts in the reconstructed images. To improve the sinogram
interpolation quality, recent methods involved the forward
projection of a prior image to complete the sinogram [13]–
[17]. These methods first estimated prior images with vari-
ous tissue information from the uncorrected image and then
performed forward projection on the prior image to conduct
sinogram completion. For example, Meyer et al. [15] improved
the LI approach by generating a prior image with tissue
processing and normalizing the projection with a forward
projection of the prior image before interpolation. As the
inaccurate prior images would lead to unfaithful structures
in the reconstructed images, a key factor for prior-image-
based approaches is to generate a good prior image to pro-
vide a more accurate surrogate for the missing data in the
sinogram. Also, some researchers focused on designing new
iterative reconstruction algorithms to reconstruct artifact-free
images from the unaffected or corrected projections [18]–[21].
For example, Zhang et al. [21] proposed an iterative metal
artifact reduction algorithm based on constrained optimiza-
tion. However, these iterative reconstruction methods often
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suffer from heavy computation and require proper hand-crafted
regularizations.

With the development of deep learning in medical image
reconstruction and analysis [22]–[25], recent progress of MAR
has featured neural networks [4], [11], [26]. Park et al. [4]
employed a U-Net [25] in the sinogram domain to deal
with beam-hardening related artifacts in polychromatic CT.
Gjesteby et al. [26] utilized deep learning to refine the result
of NMAR [15] for achieving additional correction in critical
image regions. Zhang and Yu [11] proposed to generate
a reduced-artifact prior image with CNN to help correct
the metal-corrupted regions in the sinogram. Although these
methods show reasonable results on MAR, they are limited in
handling with the remaining new artifacts in reconstructed CT
images.

To improve the quality of the reconstructed CT images,
inspired by the success of deep learning in solving ill-
posed inverse problems in natural image processing [27]–[29],
very recent works formulated MAR as an image restoration
problem and reduced the metal artifacts with image-to-image
translation networks [26], [30]–[36]. Gjesteby et al. [32]
employed a deep neural network to reduce the new arti-
facts after the NMAR method with a perceptual loss. The
RL-ARCNN [37] introduced deep residual learning to reduce
metal artifacts in cervical CT images and Wang et al. [38]
proposed to use the conditional generative adversarial network
(cGAN) [39] to reduce metal artifacts in CT images. Very
recently, Lin et al. [35] developed a dual-domain learning
method to improve the image-restoration-based MAR results
by involving sinogram enhancement as a procedure. These
image-restoration-based methods demonstrated good perfor-
mance on their experimental datasets due to the powerful
representation capability of deep neural networks. However,
in our experiments, we find that these methods tend to
degrade on other site data, as the training samples hardly
cover the unseen artifacts patterns. Although DuDoNet [35]
introduces the sinogram enhancement procedure to improve
the network performance, it still directly adopts the image-
domain-refinement output (CNN output) as the final recon-
structed image. As there is no geometry (physical) constraints
to regularize the neural networks, there would be some tiny
anatomical structure changes in the output image (see Fig. 6
for an example), which limits the usage of image domain
methods in real clinical scenarios.

In this work, we present a novel image and sinogram domain
joint learning framework for generalizable metal artifact reduc-
tion. Different from the previous image-restoration-based solu-
tions, we formulate the MAR as the deep-learning-based
sinogram completion task and train a deep neural network,
i.e., SinoNet, to restore the unreliable projections within the
metal trace region. To ease the SinoNet learning and improve
the completion quality, we simultaneously train another neural
network, i.e., PriorNet, to generate a good prior image with
less metal artifact and guide the SinoNet learning with the for-
ward projection of the prior image; see a sinogram completion
result in Fig. 1. Moreover, we design a novel residual sinogram
learning strategy to fully utilize the prior sinogram guidance to
improve the continuity of sinogram completion and thus allevi-
ate the new artifacts in the reconstructed CT images. The final

Fig. 1. The qualitative comparison of sinogram completion. An ROI
is enlarged and shown with a narrower window to better visualize the
difference. The linear interpolation (LI) [2] produces a poor estimation
of the missing projections (d), while the deep network can generate a
relatively good corrected sinogram (e). With the guidance of prior image,
our method predicts more accurate projections (f), which are very close
to the metal-free one.

CT image is then reconstructed from the completed sinogram
with the conventional FBP algorithm. Compared with the pre-
vious prior-image-based MAR approaches, the whole frame-
work is trained in an efficient end-to-end manner so that the
prior image generation and deep sinogram completion pro-
cedures can be learned in a collaborative manner and benefit
from each other. We extensively evaluate our framework on CT
images with simulated and real metal artifacts, demonstrating
that our method produces superior artifact-reduced results and
outperforms other MAR methods.

Our main contributions are summarized as follows.

1) We present a novel image and sinogram domain joint
learning framework for metal artifact reduction by
simultaneously leveraging the advantages of image
domain and sinogram domain-based MAR techniques.
The proposed framework achieves superior performance
on CT images with simulated and real metal artifacts.

2) We propose to train a deep prior image network to
provide a good estimation of missing projections and
thus enhance sinogram completion network learning.
The two networks are trained in an end-to-end manner
and can benefit from each other.

3) We design a novel residual sinogram learning scheme
to facilitate sinogram completion. The scheme is able
to fully utilize prior image information and alleviate the
new artifacts on the reconstructed CT image.

The remainders of this article are organized as follows.
We elaborate our framework in Section II. The experiments
and results are presented in Section III. We further discuss
the key issues of our method in Section IV and draw the
conclusions in Section V.

II. METHODOLOGY

A. Overview
Fig. 2 depicts the overview of our proposed image and

sinogram domain joint learning framework for metal artifact
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Fig. 2. Schematic diagram of our proposed image and sinogram domain joint learning framework for metal artifact reduction. Given the metal-
affected sinogram Sma and metal trace mask Tr, we use linear interpolation to acquire LI corrected sinogram SLI. We jointly train a prior image
generation network, i.e., PriorNet, to generate a good prior image Xprior and a sinogram completion network, i.e., SinoNet, to restore the metal-
affected sinogram with the guidance of the prior sinogram Sprior, which is the forward projection of the prior image Xprior. The Sres is the residual
sinogram map between SLI and Sprior. The final metal-free image is reconstructed from the corrected sinogram Scorr with the FBP algorithm.

reduction in CT images. The whole framework integrates the
image domain learning (prior image generation) and sinogram
domain learning (sinogram completion). Given the original
metal-corrupted sinogram Sma ∈ R

H×W and the metal trace
mask Tr ∈ {0, 1}H×W , we first apply the linear interpola-
tion [2] to produce an initial estimation for the projections
within the metal trace region and acquire the LI corrected sino-
gram SL I for the following procedures. To ease the sinogram
completion procedure, we train an image domain network, i.e.,
PriorNet, to produce a good prior image X prior with less metal
artifact and acquire the prior sinogram Sprior with the forward
projection of the generated prior image X prior to guide the
sinogram domain learning. We simultaneously train another
deep neural network, i.e., SinoNet, to restore the metal-affected
projections to acquire the corrected sinogram Scorr by taking
the LI corrected sinogram SL I , the prior sinogram Sprior , and
the metal trace mask Tr as input. Particularly, we design
a novel residual learning strategy and make the SinoNet
refine the residual sinogram map between SL I and Sprior .
The final metal-free CT image is then reconstructed from the
corrected sinogram Scorr with the conventional FBP algorithm.
The whole framework is trained in an end-to-end manner
so that the prior image generation and sinogram completion
procedures can benefit from each other.

B. Deep Prior Image Generation

In this step, we propose to generate a prior image with
a deep neural network to facilitate the sinogram completion
procedure, as the metal-free prior image would provide a
good estimation for the missing projections in the original
sinogram. A straightforward solution for this procedure is to
take the original CT image with metal artifacts as input and
train a neural network to generate the prior image with less

metal artifact. However, when the metal objects are relatively
large, the metal artifacts in the original CT image would
be very strong and it is difficult for the neural network to
reduce the metal artifacts. Therefore, besides the original CT
image, we also involve the LI corrected image into the prior
image generation procedure and employ a neural network, i.e.,
PriorNet, to refine the LI corrected image by residual learning.
Specifically, we first reconstruct the original metal-corrupted
CT image Xma and LI corrected image X L I from the original
metal-affected sinogram Sma and the linear interpolated sino-
gram SL I , respectively. Then the artifact-reduced prior image
is represented as

X prior = X L I + fP ([Xma, X L I ]), (1)

where fP denotes the prior image generation network and
[a, b] represents the concatenation operation of image a and b.

The PriorNet is based on the U-Net [25] architecture, but
we halve the channel number to reduce the total number
of parameters. To optimize the network, we employ the
L1 loss to minimize the difference between the network
output and the ground truth CT image Xgt without metal
artifacts

Lprior = ||X prior − Xgt ||1. (2)

We further acquire the prior sinogram Sprior by performing
forward projection on the generated prior image X prior

Sprior = P(X prior ), (3)

where P denotes the forward projection operator. The prior
sinogram Sprior is then used to guide the network to complete
the missing projections in the sinogram domain.
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C. Deep Sinogram Completion

With the guidance of prior sinogram Sprior , we train another
neural network, i.e., SinoNet, to restore the projections within
the metal trace region T r in the sinogram domain. Specifically,
the SinoNet takes the LI corrected sinogram SL I , the prior
sinogram Sprior , and the metal trace T r as input, and outputs
the missing projections in metal trace region T r by utilizing
the contextual information of the sinogram. To improve the
continuity of the completed projections at the boundary of the
metal trace region, we design a residual sinogram learning
strategy and make the SinoNet refine the residual sinogram
between SL I and Sprior . Particularly, we calculate the residual
sinogram map Sres , which can be treated as a smooth transi-
tion between the prior sinogram Sprior and the LI corrected
sinogram SL I , and then we employ the SinoNet to refine the
residual projections within the metal trace region T r . The
corrected sinogram S′

corr can be written as:

S′
corr = fS([Sprior − SL I , T r ]) + SL I , (4)

where fS represents the sinogram completion network. As the
network estimates the residual values instead of the absolute
projection values, it can alleviate the discontinuity at the
boundary of the metal trace [17]. Considering that the metals
only affect projection data in metal trace region, we further
composite the output of SinoNet and SL I with respect to Tr
to get the final corrected result:

Scorr = S′
corr � T r + SL I � (1 − Tr)

= fS([Sprior − SL I , T r ]) � Tr + SL I , (5)

where � denotes element-wise multiplication.
To estimate the residual projections within the metal trace

region, the network should be better aware of the metal trace
information. However, the metal mask or metal trace regions
are usually small and occupy a small portion of the whole
sinogram, directly concatenating the residual sinogram map
Sprior −SL I and T r as network input would weaken the metal
trace information due to the down-sampling operations of the
network. Therefore, we employ the mask pyramid U-Net [40]
to retain the metal trace information into each layer explicitly
so that the network is able to extract more discriminative
feature for restoring the missing information at metal trace
region.

To optimize the SinoNet, we adopt the L1 loss to minimize
the differences between the corrected sinogram and the ground
truth sinogram Sgt without metals. However, as the composited
sinogram Scorr has the identical values with the ground truth
sinogram outside the metal trace region, directly minimizing
the difference between Scorr and Sgt would provide supervi-
sion for the network output only within the metal trace region.
As we mentioned above, the metal region occupies only a
small portion of the whole sinogram. To improve the training
efficiency, we also encourage the pre-composited sinogram
S′

corr to be close to the ground truth sinogram Sgt so that the
loss function can also provide supervision for those network
outputs outside of the metal trace region. The total objective
of the deep sinogram completion can be represented as

Lsino = ||Sgt − Scorr ||1 + β||Sgt − S′
corr ||1, (6)

where β is a hyper-parameter to control the trade-off between
two difference items. we find that it is not sensitive to the
network performance and we empirically set it as 0.1 in our
experiments.

D. Overall Objective Function and Technical Details

The above L1 loss for SinoNet optimization only penal-
izes single projection value inconsistency in the sinogram
domain, without considering the geometry-consistency of the
completed values or penalizing the new artifacts in the recon-
structed CT images. Therefore, we further design a filtered
back-prorogation (FBP) loss to alleviate the new artifacts in
the reconstructed CT image

LF B P = ||(P−1(Scorr ) − Xgt) � (1 − M)||1, (7)

where P−1 represents the FBP operator and M is the metal
mask. Here we adopt the masked L1 loss to penalize the
intensity difference only in the non-metal regions, as it is
difficult to accurately reconstruct the original image at the
metal position. Note that the FBP operation P−1 is differen-
tiable, so that the gradient of LF B P is able to back-propagate
to SinoNet, encouraging it to generate geometry-consistent
completion results. We jointly train the PriorNet and SinoNet
in an end-to-end manner and the total objective function is

Ltotal = Lprior + α1Lsino + α2LF B P , (8)

where α1 and α2 are hyperparameters to balance the weight
of different loss items. We empirically set them as 1.0 in our
experiments.

Our whole framework takes original metal-affected
sinogram and metal trace as input. In the training phase, we use
the simulated data to train the whole framework so that we
can acquire the metal trace mask Tr for the simulated training
data by performing the forward projection on the simulated
metal mask M . In the testing phase, given the metal-affected
sinogram Sma , we can segment the metal mask M from the
reconstructed metal-corrupted CT images Xma with simple
thresholding method or other advanced metal segmentation
algorithms, and then conduct the similar forward projection
to get the metal trace mask Tr .

III. EXPERIMENTS

A. Dataset and Simulation

We evaluated our method with simulated metal artifacts
on CT images and real CT images with metal artifacts. For
the simulation data, we randomly selected a subset of CT
images from the recently released DeepLesion dataset [41]
to synthesize metal artifacts. For the simulated metal masks,
we employed the previous metal mask collection in [11],
which contains 100 manually segmented metal implants with
different shapes and sizes. Specifically, we randomly chose
1000 CT images and 90 metal masks to synthesize the
training data. The remaining 10 metal masks were paired with
an additional 200 CT images from 12 patients to generate
2000 combinations for network evaluation.

We followed the procedure in [11], [35] to simulate
the metal-corrupted sinograms and CT images by inserting
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metallic implants into clean CT images, where beam hardening
and Poisson noise are simulated. We employed a polychro-
matic X-ray source and assumed the incident X-ray has
2×107 photons. The partial volume effect was also considered
during the simulation. A fan-beam geometry was adopted
and we uniformly sampled 640 projection views between
0-360 degrees. Before the simulation, the CT images were
resized to 416 × 416, resulting in the sinogram with the size
of 641 × 640.

B. Implementation Details
The framework was implemented in Python based on

PyTorch [42] deep learning library. We trained the PriorNet
and SinoNet in an end-to-end manner with differential forward
projection (FP) and filtered backprojection (FBP) operations
provided in ODL library.1 In the network training, all the
images had a size of 416 × 416 and the sinograms were with
a size of 641 × 640. The Adam optimizer [43] was used to
optimize the whole framework with the parameters (β1, β2) =
(0.5, 0.999). We totally trained 400 epochs with a mini-batch
size of 8 on one Nvidia 1080Ti GPU and the learning rate
was set as 1e−4. In each training iteration, we randomly chose
one CT image with synthesized metal artifacts from the pool
of 90 different metal mask pairs and the different CT images
were formed as one mini-batch data to be fed into the network
for calculating the total objective function.

C. Experimental Results on DeepLesion Data
1) Quantitative Comparisons With State-of-the-Art Methods:

We compare our method with conventional interpolation-
based methods: linear interpolation (LI) [2] and normal-
ized metal artifact reduction (NMAR) [15], which are
widely employed approaches in MAR. Also, we compare
our method with the recent deep-learning-based methods
CNNMAR [11], cGANMAR [38], and the state-of-the-art
method DuDoNet [35]. The CNNMAR approach also adopts
a CNN to generate a reduced-artifact prior image and then
uses traditional interpolation to correct the metal-corrupted
regions in the sinogram. Both cGANMAR and DuDoNet
employ the image domain network to generate the final results,
where cGANMAR directly uses an image-to-image translation
network to reduce artifacts on original metal images while
DuDoNet further incorporates sinogram enhancement to ease
image domain learning. For CNNMAR, we used the public
released code and model. We re-implemented DuDoNet [35]
and cGANMAR [38], since there is no public implementation.

Table I shows the quantitative comparison results of
our method and other methods on the DeepLesion dataset.
It is observed that the prior-image-based interpolation method
NMAR outperforms LI approach on both root mean square
error (RMSE) and structured similarity index (SSIM) metrics,
as the prior image information improves the accuracy of
interpolation for missing projection values. The deep-learning-
based methods CNNMAR and cGANMAR achieves much
lower RMSE and higher SSIM values than conventional MAR
methods, showing the advantage of data-driven deep neural

1https://github.com/odlgroup/odl

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS

ON DEEPLESION DATASET

networks for metal artifact reduction. The DuDoNet achieves
better RMSE and SSIM performance when compared with
cGANMAR, as it integrates sinogram enhancement to reduce
artifacts before conducting the image refinement procedure.
Compared with DuDoNet, our method further reduces RMSE
with 6.85 HU and achieves slightly better SSIM values.
Overall, our framework attains the best performance among
different methods in terms of RMSE and SSIM, showing the
effectiveness of our method for metal artifact reduction.

2) Qualitative Analysis: Fig. 3 and Fig. 4 shows the visual
comparisons of our method and other methods on DeepLesion
simulation data. We show the refer metal-free CT images,
simulated metal artifact images (Metal Image), and metal
artifact reduction results of different methods. The simulated
metal masks are colored in red for better visualization. It is
observed that severe streaking artifacts are in the original
metal images and a severe dark strip exists between two
metal implants (see Fig. 3(B1)). Generally, the deep-learning-
based methods CNNMAR, cGANMAR and DuDoNet can
reduce more artifacts than conventional LI and NMAR
approaches. When the metal implants are small (Fig. 3),
the DuDoNet and cGANMAR can achieve better visual results
than CNNMAR, while there are still some mild artifacts in
the DuDoNet and cGANMAR results; see the dashed blue
ovals in Fig. 3(F3&G3). Compared with these methods, our
method effectively reduces most artifacts and retains the fine
details of the structures. Fig. 4 shows the results when the
metal implants are large. It is observed that the conventional
interpolation methods LI and NMAR, and image domain
method cGANMAR and DuDoNet cannot preserve the details
of the original structures and there are some new secondary-
artifacts in the cGANMAR results; see the green arrows in
Fig. 4(F1&F2). Compared to CNNMAR, our method preserves
better structure details, showing the effectiveness of the deep
signogram completion mechanism. We also calculate the ROI
RMSE and ROI SSIM for the red box patches in Fig. 5 to
quantitatively compare different methods. As shown in Fig. 5
(A2-H2&A4-H4), our method achieves the lowest RMSE and
highest SSIM values among different methods.

D. Generalization to Different Site Data
The selected CT images from the DeepLesion dataset are

samples of abdomen and thorax. To show the feasibility of
our method applied to different site data, we directly evaluate
the model trained with DeepLesion data on the head CT
images collected from the online website with simulated metal
artifacts. Fig. 5 shows the visual metal artifact reduction
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Fig. 3. Visual comparison with different methods on DeepLesion dataset. The simulated metal masks are colored in red for better visualization.
The (A1-A4) are refer images. We show the MAR results of LI [2] (C1-C4), NMAR [15] (D1-D4), CNNMAR [11] (E1-E4), cGANMAR [38]
(F1-F4), DuDoNet [35] (G1-G4), and our method (H1-H4). The display window of the first and second samples are [−480 560] and [−175, 275] HU,
respectively. We also use ROI RMSE and ROI SSIM to show quantitative results for a better comparison.

results of our method on the head CT images with simulated
dental fillings. We also show the conventional LI and NMAR
results and the deep-learning-based CNNMAR and DuDoNet
results. It is observed that the LI and NMAR introduce several
secondary-artifacts and could change the anatomical structures
of the tooth; see blue arrows in Fig. 5(d). The DuDoNet
can further reduce the artifacts, while there are still several
shading artifacts in the output images; see green arrows in
Fig. 5(f). Although without training with head CT images,
our method effectively reduces artifacts,indicating that the
proposed method has the potential to handle different site data.
Notably, the MAR result of our method is even comparable
with CNNMAR, which is also trained with head CT images.

E. Experiments on CT Images With Real Metal Artifacts
1) Results on CT Images With Real Metal Artifacts: Since

the original sinogram data with metal artifacts in the real
clinical scenario are difficult to access, we follow the previous
work [35] to evaluate our method on clinical CT images with
metal artifacts. Specifically, we collected some clinical CT
images with metal artifacts and segmented the metal mask
from the clinical CT images with a simple thresholding method
(i.e., 2000 HU in our experiments). The forward projection
of the metal masks was conducted to generate the metal
projection and the pixels with the projection value greater than
zero were regarded as the metal trace region T r . We also
performed the forward projection on the clinical CT image
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Fig. 4. Visual comparison with different methods on DeepLesion dataset. The simulated metal masks are colored in red for better visualization.
The (A1-A2) are refer images. We show the MAR results of LI [2] (C1-C2), NMAR [15] (D1-D2), CNNMAR [11] (E1-E2), cGANMAR [38] (F1-F2),
DuDoNet [35] (G1-G2), and our method (H1-H2). The display window is [−175 275] HU.

with the same imaging geometry as the above simulation
procedure to acquire the metal-corrupted sinogram Sma . The
LI corrected sinogram SL I was then generated from Sma and
T r with linear interpolation. Finally, we fed Sma , SL I and Tr
into our framework to get the meta artifact reduction images.
Fig. 6 presents the visual results of different methods. Our
method effectively reduces metal artifacts compared with the
original metal image. From the yellow zoomed patches, it is
observed that the other methods change some tiny anatomical
structures of the original image, while our method can preserve
the fine-grained anatomical structures.

2) The Influence of Metal Mask Segmentation: An accurate
metal trace mask (or metal mask equally) is vital for the good
performance of metal artifacts reduction in our framework.

In practice, we can manually segment the metals or use
some automatic metal segmentation methods (e.g., threshold-
ing method) to segment the metals. To investigate the influence
of metal mask segmentation on the final MAR results, we take
different metal masks to acquire the metal traces and then
adopt our method to conduct MAR with taking these different
metal traces as input. Fig. 7 shows the MAR results of our
method by taking the original thresholding-based metal mask
(a), the dilation metal masks (b & c), and erosion metal
masks (e & f) as input. In general, our method can achieve
reasonable MAR results under slightly metal segmentation
errors. The over-segmented metal masks would lead to a
relatively large metal trace and our method needs to complete
more projection values. As the network has been trained to
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Fig. 5. Visual results on head CT images with different numbers of simulated dental fillings. The simulated dental fillings are colored in red for better
visualization. The display window is [−1000 1600] HU.

Fig. 6. Visual comparison on CT images with real metal artifacts. The segmented metals are colored in red for better visualization. Our method
effectively reduces metal artifacts and preserves the fine-grained anatomical structures. The display window of whole image is [−480 560] HU and
the display window of cropped patches is [−400 300] HU.

completed different metal traces, it can estimate the missing
projection values without leading to strong new artifacts in the
reconstructed CT images, although there are additional shading
artifacts in the CT images. As for the under-segmented case,
the corresponding metal trace is narrower than the original
metal trace. The sinogram completion network would only
complete some projection values of the original metal trace
region and reuse some unreliable projection data. Therefore,
our method can only reduce some metal artifacts and there still
remains some residual streaking artifacts in the reconstructed
CT image.

F. Analytical Studies
1) Effectiveness of Prior Image Generation: In our frame-

work, we train the PriorNet to generate a good prior image

to ease sinogram completion. To show the effectiveness of
this procedure, we directly train a neural network to complete
the sinogram without taking the prior sinogram as input.
The quantitative results of this method on DeepLesion sim-
ulated dataset are shown in Table II. It is observed that this
method (Deep sinogram completion) achieves much higher
RMSE and lower SSIM values than our method, verifying the
effectiveness of prior image generation procedure. In Fig. 8,
we show some generated prior images and final metal artifact
reduction images on DeepLesion and head CT data. We can
see that the prior images (Fig. 8(b)) have less artifacts than
original metal image (Fig. 8(a)) and our final results (Fig. 8(c))
further reduce artifacts compared with the prior images.
We also train our framework by taking only original metal
image as PriorNet input. As shown in Table II, this method
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Fig. 7. The results of our method with different segmented metal
masks as input. We show the MAR results with thresholding-based metal
segmentation (a); we also dilate the metal mask to get over-segmented
masks (b & c) and erode the metal mask to get under-segmented masks
(e & f). The display window is [−480 560] HU.

TABLE II
QUANTITATIVE ANALYSIS OF OUR METHODS ON SIMULATED

DEEPLESION DATASET

Fig. 8. Illustration of the generated prior image. The display window of
first row and seconed row are [−480 560] HU and [−1000 1600] HU,
respectively.

(Only metal image) generates slightly worse results than our
method on the simulated dataset, indicating that incorporating
LI corrected image as input can facilitate the prior image
generation.

2) Effectiveness of Residual Sinogram Learning: We show
the qualitative MAR results of our method with and without
residual sinogram learning strategy in Fig. 9. The first row is
the results on the simulated metal artifact image and the second
row shows the results on the real clinical CT image with
metal artifacts. In the experiment without residual sinogram
learning, the SinoNet directly takes the prior sinogram and
metal trace mask as input and outputs the refined projections
within the metal trace region. From the visual comparison in
Fig. 9, we can observe that our framework further reduces

Fig. 9. The results of our method with (b) and without (c) residual
sinogram learning strategy. The first row is simulated metal image and
the second image is real clinical CT image. The display window is [−480
560] HU.

metal artifacts on both simulated and real samples by adopting
the residual sinogram learning strategy. We also present the
quantitative results of “w/o residual sinogram learning” in
Table II. It is observed that we achieve higher RMSE and
lower SSIM values with residual sinogram learning.

3) Compared With Tissue Processing: The tissue processing
step is often used to acquire the prior image in previous MAR
methods. We conduct another experiment to investigate the
effect of this strategy, where we employ the tissue processing
and metal trace replacement steps [17], [23] to process the
generated prior image X prior of our method and then acquire
the final metal-free image with FBP reconstruction. The quan-
titative result of this method (With tissue processing) is shown
in Table II. It is observed that With tissue processing achieves
satisfying results on the simulated DeepLesion dataset, while
its performance is still inferior to our end-to-end deep sino-
gram completion strategy, indicating that the deep sinogram
network could automatically learn how to reduce the mild
artifacts in the prior image.

IV. DISCUSSION

MAR is a long-standing problem in CT imaging. In this
work, we aim to design a data-driven framework to address
this problem by utilizing a large amount of training data. The
previous deep-learning-based methods usually formulate the
MAR as an image restoration problem. Whereas we borrow
the spirit of conventional MAR approaches and formulate
the MAR as a deep sinogram completion problem, aiming
to improve the generalization and robustness of the frame-
work. Since directly regressing the accurate missing projection
data is difficult, we propose to incorporate the deep prior
image generation procedure and adopt a residual sinogram
completion strategy. This manner can improve the continuity
of the projection values at the boundary of metal traces and
alleviate the new artifacts, which are the common drawbacks
of sinogram completion based MAR methods. In such way, our
framework could better utilize the advantages of deep learning
techniques while alleviating the risk of overfitting to certain
training data.

We solve MAR in both sinogram and image domains,
which share the same strategy with DuDoNet [35] and
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DuDoNet++ [36]. However, our framework differs from them
in a few important aspects. The DuDoNet and DuDoNet++
directly adopt the image-domain-refinement output as the
final MAR image, whereas the final MAR image of our
method is directly FBP-reconstructed from the completed
sinogram. As there is no geometry (physical) constraints to
regularize the neural networks, there would be some tiny
anatomical structure changes in the CNN-output images. Our
FBP-reconstructed image could preserve the anatomical struc-
ture of the original image and avoid the resolution loss, as we
only modify the metal trace region values in the sinogram;
see comparisons in Figs. 3&4. More importantly, we design a
novel residual learning strategy for the sinogram enhancement
network to refine the residual projections within the metal trace
region, and both quantitative and qualitative results show the
effectiveness of such residual learning strategy.

It is clinically impractical to acquire metal-free and metal-
inserted CT data for network training, We thus simulate
metal artifacts from clinical metal-free CT images to acquire
synthesized training pairs. In this case, the quality of simulated
data would largely influence network performance. Currently,
we simulate the metal artifacts without carefully designing
the simulated metal masks. In the future, we will investigate
how to create a good simulated dataset to further improve the
network performance on real clinical CT images.

The previous prior-image-based MAR methods would uti-
lize tissue processing to post-process the generated prior
image. Whereas in our method, we directly employ the CNN
output as the prior image to guide the sinogram completion
network. In this case, we can jointly train the PriorNet
and SinoNet, and the prior image generation and sinogram
completion procedures can benefit from each other. Although
some mild artifacts would remain in the generated prior image,
the sinogram completion network would automatically learn
how to complete the sinogram from the prior sinogram, so that
our final output can remove these mild artifacts.

We have trained and evaluated our method on simulated
datasets, but as shown in the experiments, our framework
has strong potential to be applied in CT images with real
metal artifacts. Since there is no public real projection data
and we need to cooperate with CT device venders to acquire
such real projection data, in the current study, we use forward
projection to simulate the projection data. This is a limitation
of our current work and we will evaluate the effectiveness of
our method on real project data in the future. When applying
the framework into real clinical data, one important practice
issue is how to acquire the accurate metal trace and metal
masks. Although our framework is relatively robust to the
metal mask segmentation, an accurate metal segmentation
would further ensure the stability of the MAR results. Deep
learning has achieved promising results in various medical
image segmentation problems [24], [25], [44]. Incorporating
deep learning-based metal segmentation or advanced metal
identification algorithm [3] into our framework would further
improve the robustness of our method. Recently, some works
studied how to locate the shape and location of metal objects
directly from the metal-corrupted sinogram [3], [45]. These
binary reconstruction works can also be integrated into our

framework for better metal artifact reduction. Moreover, it is
more interesting to investigate how to simultaneously conduct
metal mask identification and metal artifact reduction in a
collaborative manner.

V. CONCLUSION

We present a generalizable image and sinogram domain
joint learning framework for metal artifact reduction in CT
imaging, which integrates the merits of deep learning and
conventional MAR methods. Our framework follows the prior-
image-based sinogram completion strategy and we employ two
networks to conduct prior image generalization and sinogram
completion. The whole framework is trained in an end-to-
end manner so that the two networks can benefit from each
other in network learning. Our framework is trained with the
simulated metal artifacts data, while the experimental results
show the strong potential of our method to handle CT images
with real artifacts. The future works include investigating how
to simultaneously conduct metal mask identification and metal
artifact reduction, as well as how to perform the procedure in
an unsupervised manner.
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