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Abstract— The automatic diagnosis of various retinal
diseases from fundus images is important to support
clinical decision-making. However, developing such auto-
matic solutions is challenging due to the requirement
of a large amount of human-annotated data. Recently,
unsupervised/self-supervised feature learning techniques
receive a lot of attention, as they do not need massive
annotations. Most of the current self-supervised methods
are analyzed with single imaging modality and there is
no method currently utilize multi-modal images for bet-
ter results. Considering that the diagnostics of various
vitreoretinal diseases can greatly benefit from another
imaging modality, e.g., FFA, this paper presents a novel
self-supervised feature learning method by effectively
exploiting multi-modal data for retinal disease diagnosis.
To achieve this, we first synthesize the corresponding
FFA modality and then formulate a patient feature-based
softmax embedding objective. Our objective learns both
modality-invariant features and patient-similarity features.
Through this mechanism, the neural network captures the
semantically shared information across different modali-
ties and the apparent visual similarity between patients.
We evaluate our method on two public benchmark datasets
for retinal disease diagnosis. The experimental results
demonstrate that our method clearly outperforms other
self-supervisedfeature learningmethods and is comparable
to the supervised baseline. Our code is available at GitHub.

Index Terms— Retinal disease diagnosis, self-supervised
learning, multi-modal data.

I. INTRODUCTION

COLOR fundus photography has been widely used in clin-
ical practice to evaluate various conventional ophthalmic

diseases, e.g., age-related macular degeneration (AMD) [1],
pathologic myopia (PM) [2], and diabetic retinopathy [3], [4].
Recently, deep learning has shown very good performance on
a variety of automatic ophthalmic disease detection problems
from fundus images [5]–[7], and these techniques can help
ophthalmologists in decision making. The success is attributed
to the learned representative features from fundus images,
which requires a large amount of training data with massive

Manuscript received June 16, 2020; accepted July 8, 2020. Date of
publication July 13, 2020; date of current version November 30, 2020.
This work was supported in part by a Faculty Research Award from
Google Inc. (Corresponding author: Lei Xing.)

The authors are with the Department of Radiation Oncology, Stanford
University, Stanford, CA 94305 USA (e-mail: xmengli@stanford.edu;
jeremy18@stanford.edu; tauhid@stanford.edu; lequany@stanford.edu;
lei@stanford.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2020.3008871

human annotations. However, it is tedious and expensive
to annotate the fundus images, since experts are needed to
provide reliable labels. Hence, in this paper, our goal is to learn
the representative features from data itself, without any human
annotations. Then, the learned representations are evaluated on
the fundus image classification tasks.

The self-supervised feature learning methods have been
explored in the medical imaging domain for several tasks, such
as subject identification from spinal MRI [10], cardiac MR
image segmentation [11], brain hemorrhage classification [12]
and lung lobe segmentation and nodule detection task [13].
Most previous works focused on developing novel pretext
tasks as the supervisory signals to train the network to learn
feature representation. For example, [11] proposed to learn
self-supervised features by predicting anatomical positions
from MR images. Reference [12] designed a new pretext task,
i.e., Rubik’s cube recovery, as a supervisory signal to train the
network to predict these transformations. The common idea
of these works is to exploit internal structures of data and
encourages the network to predict such structures. However,
most previous works are focused on learning self-supervised
features with single modality data, while none of them investi-
gate the role of multi-modal data and how it could be utilized
in self-supervised learning.

Fundus fluorescein angiography (FFA) is an imaging modal-
ity that can provide useful information regarding the retinal
vasculature in the retina [14]. This information can help
ophthalmologists better understand the structures of fun-
dus lesions, microangioma, and capillary non-perfusion area,
which are crucial for the diagnosis and treatment of some
vitreoretinal diseases like AMD and PM [14]–[16]. The retinal
vasculature information presented in FFA is complementary to
color fundus images since FFA could identify fundus lesions
that were not discovered by color fundus images [15]. More-
over, as shown in [14], compared to using color fundus pho-
tographs alone, there is a significant improvement in diagnostic
sensitivity when using color fundus photographs with the
corresponding FFA images. To utilize the mutual information
in these two modalities, we propose to learn the general feature
representations for fundus disease classification via both color
fundus and the corresponding FFA images.

However, FFA is an invasive and time-consuming proce-
dure, which is difficult to collect in many clinical sites. To the
best of our knowledge, the Fundus-FFA dataset [9] is the only
publicly available color fundus images with the corresponding
FFA. Hence, we obtain the FFA modality through a generative

0278-0062 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on January 11,2021 at 12:54:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1105-8083
https://orcid.org/0000-0002-3920-0881
https://orcid.org/0000-0002-9315-6527
https://orcid.org/0000-0003-2536-5359
https://orcid.org/0000-0001-6259-632X


4024 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 12, DECEMBER 2020

adversarial network on the public fundus-FFA dataset [9], such
that our method is still applicable even when only color fundus
images are available. Some examples of the color fundus
and the corresponding synthesized FFA images are shown
in Figure 1. Naively concatenating more datasets is a simple
solution to utilize multiple modalities. However, as has been
discovered in supervised learning, it is not an efficient way
to use multiple modalities, which can even lead to reduced
performance on the dataset of interest. We also observed
this phenomenon for self-supervised learning, as results in
Figure 5(a) in Section IV. By enlarging the dataset with
corresponding FFA images, self-supervised learning perfor-
mance decreases by around 6%. This fact suggests that the
presence of domain difference can affect the performance and
cross-modality relationship has to be considered.

To address this issue, in this paper, we formulate a novel
patient feature-based softmax embedding to learn general
feature representation from multi-modal data by learning the
positive concentrated and negative separated properties. The
positive concentrated property refers to learn transformation-
invariant and modality-invariant features for individual
patients. This is motivated by the fact that our downstream task
is disease classification and a patient’s disease classification
result would not change due to image transformations, thus
the expected feature representation should be invariant to
transformations. Similarly, a patient’s two modalities, i.e.,
a color fundus image and the corresponding FFA image,
should share the same semantic meaning, thus their fea-
ture representations should be coherent. Hence, we propose
to mine the shared cross-modality information by learning
modality-invariant features. The negative separated prop-
erty refers to learn patient-similarity features by separating
patients from each other. This is based on the observation that
class-wise supervised learning can retain apparent similarity
among classes in the representation space. For an image from
a class leopard, the classes that get the highest responses from
a trained neural net classifier are all visually correlated, e.g.,
jaguar and cheetah. It is not the semantic labeling, but the
apparent similarity in the data themselves that brings some
classes closer than others. Hence, if we treat each patient as
a class and learn to separate him/her from others, we may
end up with a representation that captures apparent similarity
among patients. With these constraints as our learning objec-
tive, the network encodes both modality-invariant features
and patient-similarity features into high-level representations,
which can capture the semantically shared information across
different modalities and apparent visual similarity between
patients; see demonstrations in Figure 5 and Figure 7. A
“patient” is a triplet, consisting of color fundus, transformed
fundus, and FFA images, where all these images are obtained
from the same patient. “patient feature-based” denotes that
our loss function is calculated directly based on the patients’
features. Hence, we name our method as “patient feature-based
softmax embedding.”

To demonstrate the effectiveness of our method,
we employed two public fundus image datasets for
disease classification, i.e., Ichallenge-AMD dataset [17],
and Ichallenge-PM dataset [18]. Given that the proposed

Fig. 1. Examples of color fundus images and the corresponding synthe-
sized FFA images. Fundus images are selected from the Ichallenge-AMD
dataset [26], and FFA images are synthesized by training a CycleGAN [8]
on a public Fundus-FFA dataset dataset [9], and then tested on the
unseen fundus images. Our goal is to perform self-supervised learning
using data from these two related modalities.

self-supervised method does not use any label information,
a direct comparison between our method and the state-of-
the-art retinal disease diagnosis methods might not be fair,
but extensive experiments still demonstrate the superiority
of our method against the state-of-the-art self-supervised
methods [19]–[21] on two retinal disease datasets. Notably,
our method also achieves comparable performance with the
supervised baseline.

The main contributions of this paper are:
• We present a novel self-supervised learning method by

effectively exploiting multi-modal data for retinal disease
diagnosis. Our method contains a network to synthesize
another modality, thus it is still applicable even though
only color fundus images are available. To the best of
our knowledge, this is the first work for self-supervised
disease diagnosis from fundus images.

• We formulate the patient feature-based softmax embed-
ding as a self-supervised signal to capture the mutual
information across modalities and patient-similarity fea-
tures from multi-modal data, which learns effective rep-
resentation for fundus image classification.

• Extensive experiments on two common eye diseases,
i.e., AMD and PM, demonstrate the superiority of our
method than other state-of-the-art self-supervised meth-
ods. Our method also achieves comparable results with
the supervised baseline.1

II. RELATED WORKS

In this section, we mainly review automatic disease diagno-
sis works from fundus photography and literatures related to
self-supervised feature learning.

A. Automatic Disease Diagnosis From Fundus
Photography

Many conventional ophthalmic diseases can be exam-
ined from fundus photography, such as age-related macular

1Code is available at https://github.com/xmengli999/self_supervised
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degeneration (AMD), diabetic retinopathy (DR), glaucoma,
and pathological myopia (PM). With the advances of deep
learning, considerable efforts have been devoted to develop-
ing convolutional neural networks for automatic eye disease
recognitions [4], [6], [22]–[28]. As for AMD diagnosis, [23]
employed a CNN that is pre-trained on OverFeat features
to perform AMD classification from fundus images. Refer-
ence [27] ensembled several convolutional neural networks to
classify AMD diseases into 13 classes. Reference [6] devel-
oped a DeepSeeNet based on an Inception-v3 architecture [29]
to identify patient-level AMD severity, by first detecting
individual risk factors and then combining values from both
eyes to assign a severity result. As for PM classification, [28]
employed Xception [30] as the baseline architecture with
ImageNet pre-train weights to diagnose PM from fundus
images. However, most previous works on disease diagnosis
from fundus photography are based on supervised learning,
which requires a massive amount of labeled data. Different
from previous works, in this paper, we focus on developing
the self-supervised method for fundus disease diagnosis.

B. Self-Supervised Feature Learning

Self-supervised feature learning is becoming a popular topic
and has been studied in several medical image recognition
tasks. The common principle of existing works is to con-
struct different pretext tasks by discovering supervisory signals
directly from the input data itself, and then training the
deep network to predict this supervisory information, such
that the high-level representation of the input is learned.
Notable pretext tasks include Rubik’s cube recovery [12],
anatomical position prediction [11], reconstructing part of
the image like image completion [31], [32], 3D distance
prediction [33], image-intrinsic spatial offset prediction [34].
For example, [12] proposed Rubik’s cube recovery task for
brain hemorrhage classification and tumor segmentation from
CT and MR images, respectively. Reference [11] proposed
to learn self-supervised features by predicting anatomical
positions for cardiac MR image segmentation. Reference [34]
designed image-intrinsic spatial offset relations task to learn
self-supervised features. [33] introduced predicting 3D dis-
tance between two patches sampled from the same brain as a
pretext task.

Recently, instance discrimination [19], [21], [35], an effec-
tive pretext task, achieves promising results on unsupervised
feature representation learning. For example, [36] proposed
to use softmax embedding with classifier weights to calculate
the feature similarity, however, it prevents explicitly compar-
ison over features, which results in limited efficiency and
discriminability. Reference [19] developed memory bank to
memorizes features of each instance. Reference [21] calculated
the positive concentrated property based on the “real” instance
feature, instead of classifier weights [36] or memory bank [19].
However, this method treated the optimization as the binary
classification problem via maximum likelihood estimation,
which is infeasible to learn the feature embedding from
multi-modal data.

Unlike the previous works that explored self-supervised
learning from the single modality data, we present to effec-
tively exploit multi-modal data to improve self-supervised
feature learning. Multi-modality data has been widely utilized
for many medical image recognition tasks and there are
several related works [37]–[42]. For example, [38] proposed
to identify Alzheimer’s disease (AD) - relevant biomarkers
by learning from two modalities, i.e., genetic information and
brain scans. Reference [39] developed a hybrid fusion network
for multi-modal MR image synthesis. Reference [40] proposed
a latent representation learning method for multi-modality (i.e.,
PET and MRI) based AD diagnosis. However, all these works
are supervised learning or image synthesis methods, while we
are investigating an unsupervised learning strategy for disease
classification.

From this perspective, in this work, we employ the instance
discrimination [19], [21] as the pretext task, and propose
to learn features by learning both modality-invariant and
patient-similarity features from multi-modal data.

III. METHOD

A. Overview

Figure 2 depicts the workflow of our self-supervised method
for retinal disease diagnosis. We first train a GAN model on the
Fundus-FFA dataset [9] to learn the mapping function between
the color fundus and FFA, and then obtain the synthesized FFA
modality on the Ichallenge-AMD and Ichallenge-PM dataset.
Secondly, to learn the self-supervised features, we randomly
sample n triplets, and each triplet is derived from each patient,
consisting of color fundus image, the transformed image, and
the corresponding FFA. The triplets are fed into the neural
network to learn the high-level feature representations, which
are optimized by the proposed patient feature-based softmax
embedding objective. Our learning objective encourages the
network to learn transformation- and modality-invariant fea-
tures, while also capture the patient-similarity features. Finally,
we evaluate the network on unseen fundus images, follow-
ing the standard evaluation protocol in most self-supervised
works [19], [35]. The final classification result is obtained
by applying a K-Nearest Neighbor (KNN) classifier. Below,
we will elaborate on the FFA image synthesization, patient
feature-based softmax embedding, and technical details.

B. FFA Image Synthesization

FFA is invasive and it is difficult to collect in many
clinical sites [43]. Hence, we propose to synthesize FFA
images, such that our method can still be utilized to perform
self-supervised learning even though only color fundus are
available. Specifically, we train a generative model on the
Fundus-FFA dataset [9] to learn the mapping function between
the color fundus and FFA images, and then synthesize the
corresponding FFA modality in the target fundus datasets,
i.e., Ichallenge-AMD and Ichallenge-PM dataset, to perform
self-supervised feature learning.

The Fundus-FFA dataset [9] contains color fundus images
with the corresponding FFA images, which is not pixel-
aligned. Based on this consideration, we trained a CycleGAN
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Fig. 2. The illustration of the proposed method. We first train a generative network (CycleGAN) on the fundus-FFA dataset to learn the mapping
function between color fundus image and FFA, and then synthesize the corresponding FFA on target color fundus datasets. Secondly, triplets are
derived from each patient, consisting of the randomly selected fundus image, transformed image, and the corresponding FFA. These triplets are
fed into the neural network to learn the high-level representation with our proposed patient feature-based softmax embedding objective. Finally, the
network is evaluated on unseen fundus images and the final classification result is obtained by applying a KNN on the features.

model [8] and we followed the original setting to train the
network with both adversarial loss and cycle-consistency loss.
To adapt the network to our task, we modified the learning
rate to 0.0001 and trained it for 500 epochs. After network
optimization, we tested the model on unseen fundus datasets,
and the synthesized results can be seen in Figure 1 and
Figure 6. Since there is no ground-truth FFA provided in these
datasets, the synthesization quality is measured by running
supervised learning for fundus image classification; see results
in Table V.

C. Patient Feature-Based Softmax Embedding

Let C = {ci } and S = {si }, where ci and si denote
the color fundus image and the corresponding FFA image of
patient i , respectively. Our goal is to learn a feature embedding
network fθ (·) that maps an unlabeled image ci or si to a
low-dimensional feature embedding fθ (ci ) or fθ (si ) ∈ R

d ,
where d is the feature dimension. For simplicity, we use f i =
fθ (ci ), gi = fθ (si ) to represent the feature of patient i from
fundus and FFA, respectively. We normalize all the features
by l2 normalization, i.e., �fi�2 = 1, �gi�2 = 1. Without the
ground-truth category labels, we need to form self-supervised
learning constraints to facilitate model optimization.

1) Transformation- and Modality-Invariant Features: A
patient’s disease diagnosis result would not change due to
image transformations. Thus, a good feature embedding should
satisfy that the representation of a color fundus image ci of
patient i should be invariant under random data augmentations.
Intuitively, a color fundus image ci from a patient i should
share the same semantic meaning with the corresponding
FFA image si , thus the representations of a patient should be

coherent. Hence, the network requires to learn transformation-
and modality-invariant features. To achieve this, we randomly
sample n patients from the datasets, and each patient
consists of both color fundus image and the corresponding
synthesized FFA. The selected samples are denoted by
{c1, s1, · · · , cn, sn}. To learn the transformation-invariant
features, a random data augmentation is applied to slightly
modify the original fundus ci to ĉi , and we can obtain the
batch denoted by

{
c1, ĉ1, s1, · · · , cn, ĉn, sn

}
. These images

are fed into the network to get high-level representations,
i.e.,

{
f1, f̂1, g1, · · · , fn, f̂n, gn

}
. The probability of ĉi being

recognized as patient i is defined as

P(i |ĉi ) =
exp

(
fT
i f̂i/τ

)

∑n
k=1 exp

(
fT
k f̂i/τ

) , (1)

where τ is the temperature parameter controlling the concen-
tration level of the sample distribution [44]. The probability
of si being recognized as patient i is defined by

P(i |si ) = exp
(
fT
i gi/τ

)
∑n

k=1 exp
(
fT
k gi/τ

) , (2)

where fT
i f̂i , fT

i gi denote the cosine similarity between positive
pairs, as shown in Figure 3.

2) Patient-Similarity Features: To learn patient-similarity
features, we need to treat each patient as a class and learn to
separate him/her from other patients. As shown in Figure 3,
the distance between negative pairs should be enlarged in the
representation space. The probability of c j being recognized
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Fig. 3. The illustration of the proposed patient-based softmax feature
objective.

as patient i is defined by

P(i |c j ) = exp
(
fT
i f j/τ

)
∑n

k=1 exp
(
fT
k f j/τ

) , j �= i. (3)

This equation also holds for s j . We assume different image
samples being recognized as patient i are independent,
the joint probability of ĉi , si being recognized as patient i
and c j , s j being not classified to patient i is

Pi = P(i |ĉi )P(i |si )
∏
j �=i

(1 − P(i |c j ))
∏
j �=i

(1 − P(i |s j )), (4)

3) Learning Objective: The above probability is optimized
by the negative log likelihood, which is defined as

Li = −logP(i |ĉi ) − logP(i |si ) −
∑
j �=i

log(1−P(i |c j ))

−
∑
j �=i

log(1−P(i |s j )) (5)

The final loss function is defined by minimizing the mean of
the negative log likelihood over all patients n within the batch.
Our learning objective is defined as

L = 1

n

∑
i

Li . (6)

Hence, we learn the modality-invariant and patient-similarity
features by simultaneously doing positive concentration and
negative separation. Since the loss function is calculated on
the feature of the patient, we name it as patient feature-based
softmax embedding.

D. Technical Details

1) Network Architecture: Our framework is based on
the ResNet18 backbone [45], following the same setting as the
previous works [19], [21]. We apply an average pooling on the
output of the last residual block in ResNet18. Then, the feature
is flattened to a vector and a fully connected layer, a batch
normalization layer, and a ReLU are sequentially applied
to reduce the feature dimension to 128. Finally, the feature
is normalized by l2 normalization to the embedding space.
The proposed patient feature-based softmax embedding loss
function is utilized to train the neural network.

2) Implementation Details: The whole framework is built on
PyTorch [46] with an NVIDIA Tesla V100 32GB GPU. We
resize images to 320 ×320 resolution. For data augmentation,
we randomly scale and crop images into the patches of size
224×224, with a random scaling factor chosen from [0.2, 1.0].
Our algorithm performs randomly horizontal flip and has
a probability of 0.2 to randomly grayscale the input. The
algorithm also randomly blends the image to some extent with
its black version, grayscale version. This operation changes the
brightness, contrast, and saturation of the input image with
a random factor chosen uniformly from [0.6, 1.4], following
the setting in [19], [21]. Note that data augmentation is also
applied in each image in the triplet to enrich the training
samples. For implementation, each image has two positive
samples and 2n − 2 negative samples to compute Eq. (6),
where n is the number of sampled patients and τ is set to 0.1.
In each feed forward, we sample 75 patients, i.e., n = 75.
The network is optimized with Adam optimizer [47]. The
initial learning rate is set to 0.0001 and is dropped by a factor
of 0.1 every 1000 epochs. All the experiments are equally
trained for 2000 epochs and the reported results are conducted
on 5-fold cross-validation.

3) Evaluation Protocol: We verify our method by applying a
KNN classifier on frozen features, following a common pro-
tocol [19], [21]. To investigate the transfer learning capacity,
we unfreeze the features and train a supervised linear classifier
(a fully-connected layer followed by softmax) on the target
datasets.

IV. EXPERIMENTS

A. Datasets

We employ two public retinal disease datasets, i.e.,
Ichallenge-AMD 2 (task 1) and Ichallenge-PM 3 (task 1), and
evaluate the effectiveness of our method by performing normal
and abnormal fundus image classification.

1) Ichallenge-AMD Dataset: Ichallenge-AMD dataset [17]
contains 1200 annotated retinal fundus images, including both
non-AMD subjects (77%) and AMD patients (23%). Typical
signs of AMD that can be found in these photos include
drusen, exudation, hemorrhage, etc. Since only training data
is released with annotations, we use the training data in the
Ichallenge-AMD dataset and perform 5-fold cross-validation.

2) Ichallenge-PM Dataset: Ichallenge-PM dataset [18] con-
tains 1200 annotated color fundus photos with Non-PM
(50%) and PM cases (50%). All the photos were captured
with Zeiss Visucam 500. We use the training data in the
Ichallenge-PM dataset and perform 5-fold cross-validation. In
these two datasets, the image-level annotation is provided,
where 0 denotes normal and 1 denotes abnormal cases. How-
ever, we do not utilize any human-annotated labels information
during network training. To evaluate the classification accuracy
of our method, we employ AUC, accuracy, precision, recall,
and F1-score as the evaluation metrics.

2https://ichallenges.grand-challenge.org/iChallenge-AMD/
3https://ichallenges.grand-challenge.org/iChallenge-PM/
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3) EyePACS Dataset: To evaluate the transfer learning
capacity of our model, we train the self-supervised model on
the Kaggle’s Diabetic Retinopathy Detection Challenge (Eye-
PACS) dataset4 and report the classification result on the
AMD dataset. This dataset is sponsored by the California
Healthcare Foundation. It provides a totally 88,702 images,
captured under various conditions and various devices. The
Left and right fields are provided for every subject, and an
ophthalmologist rated the presence of diabetic retinopathy in
each image on a scale of 0 to 4. We use all the images in this
dataset to train our self-supervised model. Note that we did
not utilize any human-annotated labels in this dataset.

4) Fundus-FFA Dataset: To the best of our knowledge,
Fundus-FFA dataset [9] is the only publicly available dataset
that contains color fundus images and corresponding FFA
images. It has 30 healthy persons and 29 patients with diabetic
retinopathy. Each patient has a color fundus photo and corre-
sponding FFA. The dataset is very limited and is not suitable
to train an unsupervised model. As an alternative, we train
a generative model on the Fundus-FFA dataset to learn the
mapping function between the color fundus images and the
corresponding FFA images [8], [48]–[50].

B. Comparison on the Ichallenge-AMD Dataset

To show the effectiveness of our method, we compare it
with state-of-the-art self-supervised learning methods on the
Ichallenge-AMD dataset.

1) Experimental Settings: To have a fair comparison, all
of the models are trained on the ResNet18 backbone [45]
with 5-fold cross-validation. In the Supervised baseline,
we modified the output channel of the original fully con-
nected layer of ResNet18 to 2 for two-class classification.
The supervised model is trained by the cross-entropy loss
with human-annotated labels. To compare with self-supervised
methods, unlike other self-supervised methods that learn the
2D or 3D correspondences by predicting rotation or anatomical
positions [11], [12], our fundus image classification task is
invariant to the image transformation. To the best of our
knowledge, there are no related self-supervised methods that
learn self-supervised transformation-invariant features in the
medical imaging domain, we compare with several state-
of-the-art instance discrimination methods in the computer
vision domain [19]–[21]. Finally, we perform KNN on all the
unsupervised feature learning methods to evaluate the feature
performance for classification and k = 100. Note that we run
these methods with the same backbone, learning strategies
and trained all the models for 2000 epochs on 5-fold cross-
validation.

2) Results: The results of different unsupervised methods
are shown in Table I. It is observed that Contrastive [20]
and Invariant [21] achieve better results than InstDisc [19],
showing that contrastive learning can be beneficial to unsuper-
vised feature learning. From the comparison, we can see that
Invariant [21] performs slightly better than Contrastive [20].
This is because the heavy data augmentation proposed in
Contrastive [20] would hurt the performance in our fundus

4https://www.kaggle.com/c/diabetic-retinopathy-detection/data

Fig. 4. Comparison of AUC results on the (a) Ichallenge-AMD dataset
and (b) Ichallenge-PM dataset.

TABLE I
RESULTS ON THE ICHALLENGE-AMD DATASET (UNIT: %)

TABLE II
RESULTS ON THE ICHALLENGE-PM DATASET (UNIT: %)

image classification task. It is also observed in Table I that
our method excels all other unsupervised feature learning
methods by at least around 3.16% on AUC, which demon-
strates the effectiveness of our method in the unsupervised
feature learning. Figure 4(a) visualizes the learning curve of
the validation results and we can see our method consistently
outperforms other methods. Notably, without any annotation
during training, our method is approaching to the supervised
learning baseline, e.g., 74.58% vs 77.19% on AUC. The results
further demonstrate the effectiveness of our self-supervised
learned features.

C. Comparison on the Ichallenge-PM Dataset

We also compare our method with the other unsupervised
feature learning methods on the Ichallenge-PM dataset. In this
dataset, we use the same experimental settings as those in the
Ichallenge-AMD dataset. Table II summarizes the results of
different methods on the Ichallenge-PM. From Table II we can
see that our method excels other methods on all five metrics. In
particular, our method outperforms the state-of-the-art method
Invariant [21] by 1.29% on AUC. It is observed that the
results keep consistent with those on the Ichallenge-AMD
dataset, showing the effectiveness and generalization of our
method. The validation results during learning are visualized in
Figure 4(b). We can see that our method consistently surpasses
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TABLE III
RESULTS OBTAINED BY FIRST TRAINING A SELF-SUPERVISED MODEL ON THE EYEPACS DATASET AND THEN FINE-TUNING ON THE FOLLOWING

TWO DATASETS. Random init DENOTES THE NETWORK IS TRAINED WITH RANDOMLY WEIGHT INITIALIZATION (UNIT: %)

other methods. It is worth mentioning that our method achieves
higher results than the supervised upper bound in this dataset,
which further demonstrates the effectiveness of our method.

D. Comparison on Generalization Capacity

To demonstrate the generalizable features, we show the
transfer learning results of our method. We pre-train the
self-supervised model on the EyePACS dataset and fine-tune
the model on the Ichallenge-AMD and Ichallenge-PM dataset,
respectively. In the pre-training stage, we do not utilize
any labels while the labels are required in the fine-tuning
stage. Our goal is to investigate whether our self-supervised
method can learn more generalizable or transferable features
that can be easily transferred to other tasks. We compared
with the state-of-the-art self-supervised method [21]. Dur-
ing the pre-training stage, we trained all the self-supervised
methods until convergences (around 200 epochs) on the
EyePACS dataset. Then, the learned network weight is
employed as the network initialization and is fine-tuned on
the Ichallenge-AMD and Ichallenge-PM dataset, respectively.
During the fine-tuning stage, all the models are trained with
the same learning strategy and data augmentation, and the only
difference is the network initialization.

Table III lists the transfer learning results on the
Ichallenge-AMD and Ichallenge-PM dataset. Random init
denotes the network is trained with randomly weight initializa-
tion. From Table III we can see that our method consistently
outperforms the state-of-the-art self-supervised method [21]
on two benchmark datasets. As for the Ichallenge-AMD
dataset, it is observed that our method can achieve around
6.0% and 1.5% improvement on AUC over Random init
and Invariant [21], respectively. Similarly, our result on the
Ichallenge-PM dataset also excels Random init and Invariant.
These consistent results demonstrate the excellent transfer
learning capacity of our method.

E. Analytical Studies

1) Comparison to Other Alternatives: To show the effec-
tiveness of our method, we compare the following vari-
ants: Enlarged-Data: Train a self-supervised model with the
method [21], where the multi-modal data is used by simply
enlarging the dataset. For example, the enlarged dataset has
2n samples, where n is original color fundus and n is corre-
sponding FFA. All 2n samples are used as the training images.
As-Augmentation: Train a self-supervised model on the
instance discrimination task [21] by adding the synthe-
sized modality data as an augmentation. Ours: Train a

TABLE IV
ABLATION STUDY ON THE ICHALLENGE-AMD DATASET.

(A) ENLARGED-DATA: TRAIN A SELF-SUPERVISED MODEL WITH

MULTI-MODAL DATA BY SIMPLY ENLARGING THE DATASET.
(B) AS-AUGMENTATION: TRAIN A SELF-SUPERVISED MODEL ON THE

INSTANCE DISCRIMINATION TASK BY ADDING THE SYNTHESIZED

MODALITY DATA AS AN AUGMENTATION. (C) OURS: TRAIN A

SELF-SUPERVISED MODEL ON MULTI-MODAL DATA WITH

CONSTRAINT IN EQ. (6). (UNIT: %)

self-supervised model on multi-modal data with constraint in
Eq. (6).

Figure 5 visualizes the learned feature embedding of three
variants. We randomly sample 50 color fundus images from
the Ichallenge-AMD dataset with corresponding synthesized
FFA. These images along with the randomly augmented
samples are fed into the network to get feature representa-
tions, followed by reducing the feature dimension to 2 by t-
SNE [51]. The closer the fundus and the augmented fundus
image embedding, the better transformation-invariant feature
is learned. Similarly, the closer the fundus and FFA image
embedding, the better modality-invariant feature is learned. We
can see from Figure 5(a) that Enlarged-Data achieves inferior
performance and there is no apparent relationship between
color fundus and FFA images. This is because both the fundus
image and FFA learn the transformation-invariant features on
its own, and the cross-modality information is neglected by the
network. As-Augmentation can close the distance between the
color fundus and the corresponding FFA images (the red circle
and the green rectangle in Figure 5(b)), but the performance
is still inferior. It is observed from Figure 5(c) that our
method can minimize the distance among fundus, transformed
image, and FFA image, and at the same time enlarge the
distance among different patients. Results for each variant
on the Ichallenge-AMD dataset are summarized in Table IV.
We can see our method can outperform Enlarged-Data and As-
Augmentation on all five metrics. In particular, our result sur-
passes Enlarged-Data and As-Augmentation by around 8.86%
and 3.6% on AUC, respectively. These comparisons show that
the modality-invariant constraint on multi-modal data is very
useful and can contribute to better feature representation.

2) Visualization of Patient-Similarity and Modality-Invariant
Features: Figure 5 shows the learned feature embedding
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Fig. 5. Visualization of the learned feature embedding of three variants (see definitions in Table IV). We randomly sample 50 color fundus images from
the Ichallenge-AMD dataset with corresponding synthesized FFA. These paired two modalities along with the randomly augmented fundus samples
are fed into the network to get feature representations, followed by reducing the feature dimension to 2 by t-SNE [51]. The closer the fundus (red
circle) and the augmented image (orange circle) embedding, the better transformation-invariant features are learned. The closer the fundus (red
circle) and the corresponding FFA (green rectangle) embedding, the better modality-invariant features are learned. The detailed results for each
variant are listed in Table IV. Best viewed in color.

TABLE V
ANALYSIS OF SUPERVISED LEARNING ON THE ICHALLENGE-AMD

DATASET. “FUNDUS” DENOTES THE COLOR FUNDUS AND “SYN FFA”
DENOTES THE SYNTHESIZED FFA (UNIT: %)

and we found that color fundus is very close to FFA
image in the embedding space, demonstrating the learned
modality-invariant features. We also show the similarity score
in Figure 7(a), where the maximum similarity score is 1.0. We
can observe that FFA achieves a high similarity score with the
test image in the embedding space, which further demonstrated
the modality-invariant features.

In Section I, we argue that learning to separate
patients can learn apparent visual similarity among
patients, i.e., patient-similarity features. To demonstrate
the patient-similarity features, we visualize the K-Nearest
Neighbors. In Figure 7(b), for one test image, we visualize
4-nearest neighbors with a ground-truth label shown below
each figure. We found that these neighboring images are very
similar to the test image, demonstrating that our method can
capture the similarity among patients, i.e., patient-similarity
features.

3) Evaluation on the Synthesis Quality: Since there are no
ground-truth FFA images presented in both Ichallenge-AMD
and Ichallenge-PM datasets, we evaluated the quality of FFA
images by running conventional supervised learning experi-
ments with synthesized FFA images. Specifically, we train the
supervised baseline with the synthesized FFA images and all
the training strategies are the same with those trained for color
fundus images. We showed the highest supervised learning
results in Table V. It can be observed that our synthesized FFA

Fig. 6. Visualization of synthesized FFA on the Ichallenge-AMD and
Ichallenge-PM dataset. The first row denotes the color fundus images
and the second row is the synthesized FFA images through our trained
CycleGAN model.

TABLE VI
THE EFFECTS OF THE SYNTHESIZED IMAGES ON OUR METHOD.

“SYN1” AND “SYN2” DENOTE THAT OUR METHOD IS TRAINED WITH

SYNTHESIZED FFA GENERATED AT EPOCH 450 AND 500,
RESPECTIVELY (UNIT: %)

images can achieve similar classification results, compared
to the color fundus images under three different backbones,
including ResNet18, ResNet34, and ResNet50. The results
demonstrate that the synthesized FFA images can obtain
satisfactory quality to perform disease classification tasks. We
also visualize the synthesized FFA images in Figure 6. We can
see that the retinal vasculature can be observed in the FFA
images.

To analyze the effects of the synthesized FFA images on our
method, we run our method with different synthesized images
generated at different models (saved at 450 and 500 epochs
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Fig. 7. (a) Given the test images with the normal case, AMD, and PM, we first perform the random transformation to obtain the transferred
samples, and use the GAN to generate the corresponding FFA images for each test image. Note that both the random transformed images and the
corresponding FFA images have high similarity scores with the test sample (numbers below each figure), which indicates the positive concentration
in Eq. (1) and (2) can learn the transformation- and modality-invariant features. (b) We retrieve 4-nearest neighbors from training set for each test
images based on the similarity scores through KNN algorithm. The retrieved images have high visual similarity with the test sample, identifying the
negative separation in Eq. (3) can capture visual similarity among patients.

TABLE VII
ABLATION STUDY ON OUR METHOD. THE FIRST ROW DENOTES THAT THE INPUT IS A DOUBLET, CONSISTING OF “COLOR FUNDUS AND

TRANSFORMED FUNDUS.” THE SECOND ROW DENOTES THAT THE INPUT IS A DOUBLET, CONSISTING OF “COLOR FUNDUS AND

CORRESPONDING FFA.” THE SECOND ROW DENOTES THAT THE INPUT IS A TRIPLET, CONSISTING OF “COLOR FUNDUS,
TRANSFORMED FUNDUS AND CORRESPONDING FFA” (UNIT: %)

respectively). The results are shown in Table VI. It is observed
that the disease classification results are very similar, which
indicates that our method is robust to the synthesized images
generated by the trained CycleGAN network.

4) Ablation Study on Our Method: Our method is a con-
trastive loss function performed on the triplets to optimize
“positive pairs” and “negative pairs.” This function optimizes
the joint probability of positive pairs and negative pairs; see
Eq.(4). “positive pairs” are the same as the “correct prediction”
that should be minimized while “negative pairs” are similar
to the “wrong prediction” that should be maximized. Hence,
the optimization must be done with at least one positive and
one negative pair.

Since our method has two positive pairs and one nega-
tive pair, we conduct ablation study on different combina-
tions of positive and negative pairs, and results are shown
in Table VII. The positive pairs denote that the features
should be pulled together, where transformation-invariant and
modality-invariant features can be learned. The negative pairs
denote that the features should be separated away, where
patient-similarity features can be learned. It is observed that
our method achieves the best performance when learning both
transformation-invariant and modality-invariant features.

5) Analysis on Modality-Specific Features: In Eq (2),
we encourage the network to learn modality-invariant features.

TABLE VIII
ABLATION STUDY ON MODALITY-SPECIFIC FEATURES (UNIT: %)

However, it is widely known that different modalities present
modality-specific information. In this section, we investigate
the effectiveness of preserving modality-specific information
for unsupervised representation learning. We implemented two
variants to persevere the modality-specific information. In
the first variant, we followed multi-domain self-supervised
learning work [52] and implemented an auxiliary classifica-
tion branch to differentiate the modalities. We namely this
experiment as multi-task and the result is shown in Table VIII.
However, we found that this multi-task approach would hurt
the performance. In the second variant, we added a margin
in the numerator in Eq. (2) to control the concentration of
modality-invariant features. A large margin denotes less con-
centration on positive pairs. However, as results in Table VIII,
we found there is no apparent performance improvement by
learning modality-specific features.
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6) Statistic Analysis: To provide the statistic analysis on our
method, we perform the independent t-tests on Invariant [21]
and our method on the Ichallenge-AMD dataset. We run
each experiment three times with randomly initialized seed.
Through the t-test, p-value is 0.00064, which is significantly
smaller than 0.05. The result indicates strong evidence that
there is more than a 95% probability that our method is
statistically better than Invariant [21].

V. DISCUSSION

Recently, with the advances of deep learning techniques,
automatic retinal disease diagnosis have been well studied in
the research community, such as AMD classification [6], [23],
[27], [53], DR grading [4], [5], [54], [55] and PM classifica-
tion [18], etc. Although satisfactory results were achieved on
these tasks, these methods require a large amount of labeled
data which are difficult and expensive to obtain. In this work,
we propose a self-supervised method for retinal disease diag-
nosis via effectively exploiting multi-modal data. We formulate
a patient feature-based softmax embedding learning objective,
where modality-invariant features and patient-similarity fea-
tures are learned. Our method is validated on two public reti-
nal disease datasets, i.e., Ichallenge-AMD and Ichallenge-PM
challenge, in which our method consistently outperforms other
self-supervised methods and is comparable with the supervised
baseline. Our method also surpasses other methods in terms
of transfer learning, showing the effectiveness of our method
in learning generalizable and transferable features.

Although our method achieves excellent performance,
it comes with limitations. Since the number of fundus-FFA
images is limited, we compromise to develop a multi-modal
self-supervised model by synthesizing the FFA images. In real-
ity, FFA images would provide more information about
microaneurysms and hemorrhage, which would be beneficial
for the disease diagnosis, such as AMD and PM [14]–[16].
One solution is to collect the datasets with color fundus
and corresponding FFA images. Another limitation of our
method is that in this paper we focus on unsupervised fea-
ture learning. We follow the standard evaluation protocol in
most self-supervised and unsupervised learning works [35],
[56], [57], where the feature learning stage is unsupervised
and the label information is required in the final classifiers,
such as KNN or fully connected layer. To make the whole
diagnosis process unsupervised, one solution is to investigate
joint learning of feature embedding and estimation of cluster
assignments (or labels). In particular, we will consider to
connect the feature learning with the soft and regularized deep
K-means algorithm [58].

The future direction we would like to work on is to
better model the mutual information between multi-modal
data. Another potential research direction is to extend our
method to more multi-modal medical imaging applications,
such as multi-modal MRI, CT-MRI recognition tasks, etc.
Even though only one modality is available in some cases,
we can synthesize another modality through adversarial learn-
ing. Through this, we hope to leverage the general feature
representation to improve a lot of downstream tasks, such

as segmentation, classification, and detection [31], [59]. Also,
it might bring some new insights to computer-aided diagnosis
in an unsupervised way.

VI. CONCLUSION

This paper presents a novel self-supervised learning
method by effectively exploiting multi-modal data for dis-
ease diagnosis from fundus images. Our key idea is to
jointly utilize two modalities, i.e., color fundus, and FFA,
to learn better feature representation. Our proposed patient
feature-based softmax embedding can achieve this goal by
learning modality-invariant features and patient-similarity fea-
tures, which show effective for fundus disease classification.
Experimental results on two public datasets demonstrate that
our method outperforms other self-supervised methods and
achieves comparable performance to the supervised baseline.
We also show the excellent performance of our method in
learning generalizable features.
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