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Abstract— A common shortfall of supervised deep learning
for medical imaging is the lack of labeled data, which is often
expensive and time consuming to collect. This article presents
a new semisupervised method for medical image segmentation,
where the network is optimized by a weighted combination of
a common supervised loss only for the labeled inputs and a
regularization loss for both the labeled and unlabeled data. To
utilize the unlabeled data, our method encourages consistent
predictions of the network-in-training for the same input under
different perturbations. With the semisupervised segmentation
tasks, we introduce a transformation-consistent strategy in the
self-ensembling model to enhance the regularization effect for
pixel-level predictions. To further improve the regularization
effects, we extend the transformation in a more generalized form
including scaling and optimize the consistency loss with a teacher
model, which is an averaging of the student model weights.
We extensively validated the proposed semisupervised method
on three typical yet challenging medical image segmentation
tasks: 1) skin lesion segmentation from dermoscopy images in
the International Skin Imaging Collaboration (ISIC) 2017 data
set; 2) optic disk (OD) segmentation from fundus images in
the Retinal Fundus Glaucoma Challenge (REFUGE) data set;
and 3) liver segmentation from volumetric CT scans in the
Liver Tumor Segmentation Challenge (LiTS) data set. Compared
with state-of-the-art, our method shows superior performance
on the challenging 2-D/3-D medical images, demonstrating the
effectiveness of our semisupervised method for medical image
segmentation.
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I. INTRODUCTION

SEGMENTING anatomical structural or abnormal regions
from medical images, such as dermoscopy images, fundus

images, and 3-D computed tomography (CT) scans, is of
great significance for clinical practice, especially for disease
diagnosis and treatment planning. Recently, deep learning
techniques have made impressive progress on semantic image
segmentation tasks and become a popular choice in both
computer vision and medical imaging community [1], [2].
The success of deep neural networks usually relies on the
massive labeled data set. However, it is hard and expensive to
obtain labeled data, notably in the medical imaging domain
where only experts can provide reliable annotations [3]. For
example, there are thousands of dermoscopy image records in
the clinical center, but melanoma delineation by experienced
dermatologists is very scarce, see Fig. 1. Such cases can also
be observed in the optic disk (OD) segmentation from the
retinal fundus images, and especially in liver segmentation
from CT scans, where delineating organs from volumetric
images in a slice-by-slice manner is very time consuming and
expensive.

The lack of the labeled data motivates the study of methods
that can be trained with limited supervision, such as semisu-
pervised learning [4]–[6], weakly supervised learning [7]–[9],
and unsupervised domain adaptation [10]–[12]. In this article,
we focus on the semisupervised segmentation approaches,
considering that it is relatively easy to acquire a large amount
of unlabeled medical image data.

Semisupervised learning aims to learn from a limited
amount of labeled data and an arbitrary amount of unla-
beled data, which is a fundamental, challenging problem, and
has a high impact on real-world clinical applications. The
semisupervised problem has been widely studied in med-
ical image research community [13]–[17]. Recent progress
in semisupervised learning for medical image segmentation
has featured deep learning [5], [18]–[21]. Bai et al. [18]
present a semisupervised deep learning model for cardiac
MR image segmentation, where the segmented label maps
from unlabeled data are incrementally added into the training
set to refine the segmentation network. Other semisupervised
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Fig. 1. Three common medical image segmentation tasks. The first, second,
and third rows show the skin lesion in the dermoscopy image, the OD in
retinal fundus images, and liver segmentations from CT scans, respectively.
Blue color denotes the structure boundary and red color represents the liver.

learning methods are based on the recent techniques, such
as variational autoencoder (VAE) [5] and generative adver-
sarial network (GAN) [19]. We tackle the semisupervised
segmentation problem from a different point of view. With the
success of the self-ensembling model in the semisupervised
classification problem [22], we further advance the method to
medical image segmentation tasks, including 2-D cases and
3-D cases.

In this article, we present a new semisupervised learning
method based on the self-ensembling strategy for medical
image segmentation. The whole framework is trained with a
weighted combination of supervised and unsupervised losses.
The supervised loss is designed to utilize the labeled data
for accurate predictions. To leverage the unlabeled data, our
self-ensembling method encourages a consistent prediction
of the network for the same input under different regular-
izations, e.g., randomized Gaussian noise, network dropout,
and randomized data transformation. In particular, our method
accounts for the challenging segmentation task, in which
a pixel-level classification is required to be predicted. We
observe that in the segmentation problem if one transforms
(e.g., rotates) the input image, the expected prediction should
be transformed in the same manner. When the inputs of
convolutional neural networks (CNNs) are rotated, the cor-
responding network predictions will not rotate in the same
way [23]. In this regard, we take advantage of this property
by introducing a transformation (i.e., rotation and flipping)
consistent scheme at the input and output space of our
network. Specifically, we design the unsupervised loss by
minimizing the differences between the network predictions
under different transformations of the same input. To further
improve the regularization, we extend the transformation con-
sistency regularization with the scaling operation and optimize
the network under a consistent scaling scheme. In addition,
we adopt a teacher model to evaluate images under pertur-
bations to construct better targets. We extensively evaluate
our methods for semisupervised medical image segmentation

on three representative segmentation tasks, i.e., skin lesion
segmentation from dermoscopy images, OD segmentation
from retinal images, and liver segmentation from CT scans.
In summary, our semisupervised method achieves significant
improvements compared with the supervised baseline and also
outperforms other semisupervised segmentation methods.

The main contributions of this article are as follows.

1) We present a novel and effective semisupervised method,
namely, transformation-consistent self-ensembling
model (TCSM_v2) for medical image segmentation.
Our method is flexible and can be easily applied to
both 2-D and 3-D CNNs.

2) We regularize unlabeled data with the
transformation-consistent strategy and demonstrate
effective semisupervised medical image segmentation.

3) Extensive experiments on three representative yet chal-
lenging medical image segmentation tasks, including
2-D and 3-D data sets, demonstrate the effectiveness of
our semisupervised method over other methods.

4) Our method excels with the other state-of-the-art
methods and establishes a new record in the International
Skin Imaging Collaboration (ISIC) 2017 skin lesion
segmentation data set with the semisupervised method.

This article extends our previous work TCSM [24] in
three aspects. First, multiscale inference is an effective tech-
nique utilized in many image recognition tasks [25]–[27].
To enhance the regularization, we extend TCSM with more
generalized transformation, such as random scaling. Through
this, we utilize the unlabeled data to improve the regularization
of the network. Second, our preliminary TCSM evaluates the
inputs with perturbations on the same network. To avoid the
misrecognition, we incorporate a teacher model to construct
better targets, where the teacher model is an exponential mov-
ing average (EMA) of the student model. Third, we evaluate
our method on three data sets, including the skin lesion data
set, retinal fundus data set, and liver CT data set. Experiments
on all three data sets show the effectiveness of our method
over existing methods for semisupervised medical image seg-
mentation.

II. RELATED WORK

A. Semisupervised Segmentation for Medical Images

Early semisupervised works segment medical images
mainly using hand-crafted features [13], [14], [16], [17].
You et al. [13] combined radial projection and self-training
learning to improve the segmentation of retinal vessel from
fundus image. Portela et al. [14] presented a clustering-based
Gaussian mixture model to automatically segment brain MR
images. Later on, Gu et al. [16] constructed forest oriented
superpixels for vessel segmentation. For skin lesion segmen-
tation, Jaisakthi et al. [17] explored the K -means clustering
and flood fill algorithm. These semisupervised methods are,
however, based on hand-crafted features, which suffer from
limited representation capacity.

Recent works for semisupervised segmentation are mainly
based on deep learning. An iterative method is proposed by
Bai et al. [18] for cardiac segmentation from MR images,
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Fig. 2. TCSM_v2 for semisupervised medical image segmentation (we use liver CT scans as examples). The teacher and student models share the same
architecture, and the weight of the teacher model is the EMA of the student model. The student model is trained by the total loss, which is a weighted
combination of the cross-entropy loss on labeled data, and mean square error loss on both labeled and unlabeled data. The model encourages the teacher
and student models to be transformed consistently by utilizing the unlabeled data. πi refers to the transformation-consistent regularization, including rotation,
flipping, and scaling operations.

where network parameters and segmentation masks for unla-
beled data are alternatively updated. Generative model based
semisupervised approaches are also popular in the medical
image analysis community [5], [19], [28]. Sedai et al. [5]
introduced a VAE for optic cup (OC) segmentation from
retinal fundus images. They learned the feature embedding
from unlabeled images using VAE and then combined
the feature embedding with the segmentation autoencoder
trained on the labeled images for pixelwise segmenta-
tion of the cup region. To involve unlabeled data in
training, Nie et al. [19] presented an attention-based GAN
approach to select trustworthy regions of the unlabeled
data to train the segmentation network. Another GAN-based
work [28] employed the cycle-consistency principle and per-
formed experiments on cardiac MR image segmentation.
More recently, Ganaye et al. [21] proposed a semisupervised
method for brain structures segmentation by taking advantage
of the invariant nature and semantic constraint of anatomi-
cal structures. Multiview co-training-based methods [4], [29]
have also been explored on 3-D medical data. Differently,
our method takes advantage of transformation consistency
and self-ensembling model, which is simple yet effective for
medical image segmentation tasks.

B. Transformation Equivariant Representation

Next, we review equivariance representations, to which
the transformation equivariance is encoded in the network
to explore the network equivariance property [23], [30]–[32].
Cohen and Welling [30] proposed a group equivariant
neural network to improve the network generalization, where
equivariance to 90◦-rotations and dihedral flips are encoded by
copying the transformed filters at different rotation-flip com-
binations. Concurrently, Dieleman et al. [31] designed four
different equivariance to preserve feature map transformations
by rotating the feature maps instead of the filters. Recently,
Worrall et al. [23] restricted the filters to circular harmonics
to achieve continuous 360◦-rotations equivariance. However,
these works aim to encode equivariance into the network

to improve its generalization capability, while our method
aims to better utilize the unlabeled data in semisupervised
learning.

C. Medical Image Segmentation

Early methods for medical image segmentation mainly
focused on using thresholding [33], statistical shape mod-
els [34] and machine learning [35]–[37], while recent ones are
mainly deep learning-based [38]–[40]. Deep learning methods
showed promising results on skin lesion segmentation, OD
segmentation, and liver segmentation [41]–[45]. Yu et al. [41]
explored the network depth property and developed a deep
residual network for automatic skin lesion segmentation by
stacking residual blocks to increase the network’s representa-
tive capability. Yuan et al. [46] trained a 19-layer deep CNN
in an end-to-end manner for skin lesion segmentation. As
for OD segmentation, Fu et al. [42] presented an M-Net for
joint OC and OD segmentation. In addition, a disk-aware
network [42] was designed for glaucoma screening by an
ensemble of different feature streams of the network. For liver
segmentation, Chlebus al. [37] presented a cascaded FCN
combined with hand-crafted features. Li et al. [47] presented a
2-D–3-D hybrid architecture for liver and tumor segmentation
from CT images. Although these methods achieved good
results, they are based on fully supervised learning, requiring
massive pixelwise annotations from experienced dermatolo-
gists or radiologists.

III. METHOD

Fig. 2 overviews our TCSM_v2 for semisupervised medical
image segmentation. First, we randomly sample xi raw data,
including both the labeled and unlabeled cases from the train-
ing data set, followed by performing random transformations
on these images. Teacher and student models are formulated in
our framework, where the student model is trained by the loss
function, and the teacher model is an average of consecutive
student models. To train the student model, the transformed
inputs are fed into the student model, and the softmax output
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is compared with a one-hot label using classification cost
(cross entropy in Fig. 2) and with the teacher output using
consistency cost (mean square error in Fig. 2). After the
weights of the student model have been updated with gradient
descent, the teacher model weights are updated as an EMA
of the student weights. Hence, the label information is passed
to the unlabeled data by constraining the model outputs to be
consistent with the unlabeled data.

A. Mean Teacher-Based Semisupervised Framework

To ease the description of our method, we first formulate
the semisupervised segmentation task. In the semisupervised
segmentation problem, the training set consists of N inputs
in total, including M labeled inputs and N − M unlabeled
inputs. We denote the labeled set as L = {(xi , yi)}Mi=1 and the
unlabeled set as U = {xi}Ni=M+1. For the 2-D images, xi ∈
R

H×W×3 denotes the input image and yi ∈ {0, 1}H×W is the
ground-truth segmentation mask. For the 3-D volumes, xi ∈
R

H×W×D denotes the input volume and yi ∈ {0, 1}H×W×D is
the ground-truth segmentation volume. The general semisuper-
vised segmentation learning tasks can be formulated to learn
the network parameters θ by optimizing

min
θ

M∑

i=1

l( f (xi; θ), yi)+ λR(θ,L,U) (1)

where l is the supervised loss function, R is the regulariza-
tion (unsupervised) loss, and f (·) is the segmentation neural
network and θ denotes the model weights. λ is a weighting
factor that controls how strong the regularization is. The
first term in the loss function is trained by the cross-entropy
loss, aiming at evaluating the correctness of network output
on labeled inputs only. The second term is optimized with
the regularization loss, which utilizes both the labeled and
unlabeled inputs.

The key point of this semisupervised learning is based on
the smoothness assumption, i.e., data points close to each other
in the image space are likely to be close in the label space [22],
[48]. Specifically, these methods focus on improving the
target quality using self-ensembling and exploring different
perturbations, which include the input noise and the network
dropout. The network with the regularization loss encourages
the predictions to be consistent and is expected to give better
predictions. The regularization loss R can be described as

R(θ,L,U) =
N∑

i=1

Eξ ′,ξ‖ f (xi; θ, ξ ′)− f (xi; θ, ξ)‖2 (2)

where ξ and ξ ′ denote to different regularization and pertur-
bations of input data, respectively. In this article, we share
the same spirit as these methods by designing different
perturbations for the input data. Specifically, we design the
regularization term as a consistency loss to encourage smooth
predictions for the same data under different regularization
and perturbations (e.g., Gaussian noise, network dropout, and
randomized data transformation).

In the earlier, we evaluate the model twice to get two
predictions under different perturbations. In this case, the

Fig. 3. (a) Segmentation is desired to be rotation equivariant. If the input
image is rotated, the ground-truth mask should be rotated in the same manner.
(b) Convolutions are not rotation equivariant in general. If the input image
is rotated, the generated output is not the same with the original output that
rotated in the same manner.

model assumes a dual role as a teacher and as a student. As
a student, it learns as before, while, as a teacher, it generates
targets, which are then used by itself as a student for learning.
The model generates the targets by itself, and thus, it may
be incorrect, especially when excessive weight is given to
the generated targets. To construct better targets, we employ
the mean teacher-based framework [49], where the teacher
model fθ ′ uses the EMA weights of the student model fθ ,
i.e., θ ′t = αθ ′t−1+ (1−α)θt . Specifically, the weight of teacher
model θ ′t is updated through θ ′t = αθ ′t−1 + (1−α)θt , where θt

is the student model parameters and θ ′t is the teacher model
parameters. α is a smoothing coefficient hyperparameter that
affects how the teacher model relies on the current student
model parameter. If α is large, the teacher model relies more
on the previous teacher model in the last step; otherwise,
the teacher model relies more on the current student model
parameters. According to the empirical evidence in [49],
setting α = 0 makes the model as a variation of the π
model, and the performance is the best when setting α =
0.999. We follow this empirical experience and set α to
0.999 in our experiments. Then, the transformation-consistent
regularization is performed on the input to the teacher model
fθ ′ , and the consistency loss is added on the two predictions
of the teacher and student model, respectively.

B. Transformation Consistent Self-Ensembling Model

Next, we introduce how we design the randomized
data transformation regularization for segmentation, i.e., the
TCSM_v2.

1) Motivation: In general self-ensembling semisupervised
learning, most regularization and perturbations can be eas-
ily designed for the classification problem. However, in the
medical image domain, accurate segmentation of important
structures or lesions is a very challenging problem, and
the perturbations for segmentation tasks are more worthy of
exploring. One prominent difference between these two com-
mon tasks is that the classification problem is transformation
invariant while the segmentation task is expected to be trans-
formation equivariant. Specifically, for image classification,
the CNN only recognizes the presence or absence of an object
in the whole image. In other words, the classification result
should remain the same, no matter what the data transfor-
mation (i.e., translation, rotation, and flipping) are applied to
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the input image. While in the image segmentation task, if the
input image is rotated, the segmentation mask is expected
to have the same rotation with the original mask, although
the corresponding pixelwise predictions are the same; see
examples in Fig. 3(a). However, in general, convolutions are
not transformation (i.e., flipping and rotation) equivariant,1

meaning that if one rotates or flips the CNN input, then
the feature maps do not necessarily rotate in a meaningful
manner [23], as shown in Fig. 3(b). Therefore, the convolu-
tional network consisting of a series of convolutions is also
not transformation equivariant. Formally, every transformation
π ∈ � of input x associates with a transformation ψ ∈ 	 of
the outputs; that is ψ[ f (x)] = f (π[x]), but in general π �= ψ .

2) Mechanism of TCSM: This phenomenon limits the unsu-
pervised regularization effect of randomized data transfor-
mation for segmentation [22]. To enhance the regularization
and more effectively utilize unlabeled data in our segmen-
tation task, we introduce a transformation-consistent scheme
in the unsupervised regularization term. Specifically, this
transformation-consistent scheme is embedded in the frame-
work by approximating ψ to π at the input and output
space. Fig. 2 shows the detailed illustration of the frame-
work, and Algorithm 1 shows the pseudocode. Under the
transformation-consistent scheme and other different perturba-
tions (e.g., Gaussian noise and network dropout), each input xi

is fed into the network for twice evaluation to acquire two out-
puts zi and z̃i . More specifically, the transformation-consistent
scheme consists of triple πi operations; see Fig. 2. For one
training input xi , in the first evaluation, the operation πi is
applied to the input image, while in the second evaluation, the
operation πi is applied to the prediction map. Random pertur-
bations (e.g., Gaussian noise and network dropout) are applied
in the network during the twice evaluations. By minimizing
the difference between zi and z̃i with a mean square error
loss, the network is regularized to be transformation-consistent
and thus increase the network generalization capacity. Notably,
the regularization loss is evaluated on both the labeled and
unlabeled inputs. To utilize the labeled data xi ∈ L, the same
operation πi is also performed on yi and optimized by the
standard cross-entropy loss. Finally, the network is trained by
minimizing a weighted combination of unsupervised regular-
ization loss and supervised cross-entropy loss.

3) Loss Function: It has cross-entropy loss on the labeled
inputs and the regularization term on both the labeled and
unlabeled inputs. The overall loss function is then defined as

loss = L+ λ(T )R (3)

where L and R are the supervised term and regularization
term, respectively. The time-dependent warming up function
λ(T ) is a weighting factor for supervised loss and regulariza-
tion loss. This weighting function is a Gaussian ramp-up curve,
i.e., λ(T ) = k∗e(−5(1−T )2), where T denotes the training epoch
and k scales the maximum value of the weighting function.
In our experiments, we empirically set k as 1.0.

1Transformation in this article refers to flipping, scaling, and rotation.

Algorithm 1 TCSM_v2 Algorithm pseudocode.
Input: xi ∈ L+ U , yi ∈ L
1: λ(T ) = unsupervised weight function
2: fθ (x) = student model with parameters θ
3: fθ ′(x) = teacher model with parameters θ ′
4: πi(x) = transformation operations
5: α = smoothing coefficient hyperparameter.
6: for T in [1, numepochs] do
7: for each minibatch B do
8: randomly update πi (x)
9: zi∈B ← πi( fθ (xi∈B))

10: z̃i∈B ← fθ ′(πi (xi∈B))
11: loss ←− 1

|B ′|
∑

i∈(B ′) logzi [πi(yi)]+
12: λ(T ) 1

|B|
∑

i∈B‖zi − z̃i‖2

13: update θ using optimizer
14: update θ ′T ← αθ ′T−1 + (1− α)θT

15: end for
16: end for
17: return θ ′;

We randomly sample xi∈B images from the training data
and the supervised term L within one minibatch is defined as

L = − 1

|B ′|
∑

i∈B ′
logzi [πi(yi)] (4)

where B ′ ∈ B denotes the labeled images within a minibatch,
zi and yi are the network prediction and ground-truth seg-
mentation label, respectively. At the beginning of the network
training, λ(T ) is small, and training is mainly dominated
by the supervised loss on the labeled data. In this way, the
network is able to learn accurate information from the labeled
data. As the training progresses, the network gets a reliable
model and can generate output for the unlabeled data. The
regularization term optimizes the prediction differences by
calculating the differences on the predictions

R = 1

|B|
∑

i∈B

‖zi − z̃i‖2 (5)

where zi and z̃i denote the network predictions of the student
model and teacher model, respectively, i.e., zi = πi ( fθ (xi∈B))
and z̃i = fθ ′(πi(xi∈B)). fθ and fθ ′ denote the student model
and teacher model, respectively. The student model fθ is
updated by the gradient descent while the teacher model is
updated by θ ′T = αθ ′T−1 + (1− α)θT , where α = 0.999.

4) Implementation of π Operation: Multiscale ensembling
is shown to be effective for image recognition [25]–[27]. To
enlarge the regularization effect for semisupervised learning,
we extend the TCSM to a more generalized form, including
random scaling. The main goal is to keep the consistency
of the teacher and student model after multiscale inference.
Specifically, πi operation includes not only rotation but also
random scaling operation. For the student model, we give the
input and generate the prediction zi . For the teacher model,
we randomly scale the input image and generate the prediction
result, which is then rescaled to the original size of the input
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Fig. 4. Visualization of transformation-consistent operation π in the
DenseUnet architecture. We omit the U-Net connection and the decoder part
for simplification.

image, and we finally get z̃i . Then, two predictions zi and z̃i

are minimized through a mean square error loss.
The transformation-consistent scheme includes random

scaling, the horizontal flipping operation and four kinds of
rotation operations to the input with angles of γ · 90◦, where
γ ∈ {0, 1, 2, 3}. During each training pass, one rotation
operation and one scaling operation within the scaling ratio
of 0.8–1.2 is randomly chosen and applied to the input image,
i.e., πi (xi). To keep two terms in the loss function, we evenly
and randomly select the labeled and the unlabeled samples
in each minibatch. Note that we employed the same data
augmentation in the training procedure of all the experiments
for a fair comparison. However, our method is different
from traditional data augmentation. Specifically, our method
utilized the unlabeled data by minimizing the network output
difference under the transformed inputs, while complying with
the smoothness assumption.

C. Technical Details of TCSM_v2

For dermoscopy images and retinal fundus images,
we employ the 2-D DenseUNet architecture [47] as both
our teacher and student models. Compared with the standard
DenseNet [50], we add the decoder part for the segmentation
tasks. The decoder has four blocks, and each block consists of
“upsampling, convolutional, batch normalization, and ReLU
activation” layers. The UNet-like skip connection is added
between the final convolution layer of each dense block in the
encoder part and the convolution layer in the decoder part. The
final prediction layer is a convolutional layer with a channel
number of two. Before the final convolution layer, we add a
dropout layer with a drop rate of 0.3. The network was trained
with Adam algorithm [51] with a learning rate of 0.0001.
All the experiments are trained for a total of 8000 iterations.
We also visualize the network structure diagram to show the
implementation of TCSM in Fig. 4.

To generalize our method to 3-D medical images, e.g.,
liver CT scans, we train TCSM_v2 with 3-D U-Net [38]. For
training with 3-D U-Net, we follow the original setting with
the following modifications. We modify the base filter para-
meters to 32 to accommodate this input size. The optimizer
is stochastic gradient descent (SGD) with a learning rate of
0.01. The batch normalization layer is employed to facilitate
the training process, and the loss function is modified to the
standard weighted cross-entropy loss. All the experiments are
trained for a total of 9000 iterations.

We implemented the model using PyTorch [52]. The exper-
iments differ slightly from that in [24] due to the different

implementation platforms. We used the standard data aug-
mentation techniques on-the-fly to avoid overfitting, including
randomly flipping, rotating, and scaling with a random scale
factor from 0.9 to 1.1. Note that all the experiments employed
data augmentation for a fair comparison. In the inference
phase, we remove the transformation operations in the network
and do one single test with the original input for a fair com-
parison. After getting the probability map from the network,
we first apply thresholding with 0.5 to generate the binary
segmentation result, and then use morphology operation, i.e.,
filling holes, to obtain the final segmentation result.

IV. EXPERIMENTS

A. Data Sets

To evaluate our method, we conduct experiments on various
modalities of medical images, including dermoscopy images,
retinal fundus images, and liver CT scans.

1) Dermoscopy Image Data Set: The dermoscopy image
data set in our experiments is the 2017 ISIC skin lesion
segmentation challenge data set [53]. It includes a training
set with 2000 annotated dermoscopic images, a validation set
with 150 images, and a testing set with 600 images. The image
size ranges from 540 × 722 to 4499× 6748. To balance the
segmentation performance and computational cost, we first
resize all the images to 248×248 using bicubic interpolation.

2) Retinal Fundus Image Data Set: The fundus image data
set is from the MICCAI 2018 Retinal Fundus Glaucoma
Challenge (REFUGE)2. Manual pixelwise annotations of the
OD were obtained by seven independent ophthalmologists
from the Zhongshan Ophthalmic Center, Sun Yat-sen Univer-
sity, Guangzhou, China. Experiments were conducted on the
released training data set, which contains 400 retinal images.
The training data set is randomly split to training and test

sets, and we resize all the images to 248× 248 using bicubic
interpolation.

3) Liver Segmentation Data Set: The liver segmentation
data set are from the 2017 Liver Tumor Segmentation Chal-
lenge (LiTS)3 [54], [55]. The LiTS data set contains 131 and
70 contrast-enhanced 3-D abdominal CT scans for training and
testing, respectively. The data set was acquired by different
scanners and protocols at six different clinical sites, with a
largely varying in-plane resolution from 0.55 to 1.0 mm and
slice spacing from 0.45 to 6.0 mm.

B. Evaluation Metrics

For dermoscopy image data set, we use Jaccard index (JA),
Dice coefficient (DI), pixelwise accuracy (AC), sensitivity
(SE), and specificity (SP) to measure the segmentation per-
formance

AC = TP+ TN

TP+FP+TN+FN

SE = TP

TP+FN
, SP = TN

TN+FP

JA = TP

TP+FN+FP
, DI = 2 · TP

2 · TP + FN + FP
(6)

2https://refuge.grand-challenge.org/REFUGE2018/
3https://competitions.codalab.org/competitions/17094#participate-get_data
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TABLE I

COMPARISON OF SUPERVISED LEARNING AND SEMISUPERVISED
LEARNING (50 LABELED/1950 UNLABELED) ON THE VALIDATION

SET IN THE DERMOSCOPY IMAGE DATA SET. “SUPERVISED+REG”
DENOTES SUPERVISED WITH REGULARIZATION

Fig. 5. Examples of the segmentation results of supervised learning (left)
and our method (right) on the validation set in the dermoscopy image data
set. The blue and red contours denote the ground truth and our segmentation
result, respectively.

where TP, TN, FP, and FN refer to the number of true positives,
true negatives, false positives, and false negatives, respectively.
For the retinal fundus image data set, we use JA to measure
the OD segmentation accuracy. For the liver CT data set, Dice
per case score is employed to measure the accuracy of the
liver segmentation result, according to the evaluation of the
2017 LiTS challenge [54].

C. Experiments on Dermoscopy Image Data Set

1) Quantitative and Visual Results With 50 Labeled Data:
We report the performance of our method trained with
only 50 labeled images and 1950 unlabeled images. Note
that the labeled image is randomly selected from the whole
data set. Table I shows the experiments with the supervised
method, supervised with regularization, and our semisuper-
vised method on the validation data set. We use the same
network architecture (DenseUNet) in all these experiments for
a fair comparison. The supervised experiment is optimized
by the standard cross-entropy loss on the 50 labeled images.
The supervised with regularization experiment is also trained
with 50 labeled images, but differently, the total loss function
is a weighted combination of the cross-entropy loss and the
regularization loss, which is the same with our loss function.
Our method is trained with 50 labeled and 1950 unlabeled

TABLE II

ABLATION OF SEMISUPERVISED METHOD (50 LABELED/1950
UNLABELED) ON THE VALIDATION SET IN DERMOSCOPY IMAGE

DATA SET. “R” DENOTES ROTATION TRANSFORMATION. “ND”
DENOTES GAUSSIAN NOISE AND DROPOUT. “NDR” DENOTES

GAUSSIAN NOISE, DROPOUT, AND ROTATION. “SHIFT (r )”
DENOTES SHIFTING TRANSFORMATION WITH RATIO

r . “NDRSCALE” DENOTES THE TRANSFORMATIONS

INCLUDING NOISE, DROPOUT, ROTATION, AND
RANDOM SCALING. (UNIT: %)

images in a semisupervised manner. From Table I, it is
observed that our semisupervised method achieves higher
performance than a supervised counterpart on all the eval-
uation metrics, with prominent improvements of 4.07% on
JA and 3.47% on DI, respectively. It is worth mentioning
that supervised with regularization experiment improves the
supervised training due to the regularization loss on the labeled
images; see “Supervised+regu” in Table I. The consistent
improvements of “Supervised+regu” on all evaluation metrics
demonstrate the regularization loss is also effective for the
labeled images. Fig. 5 presents some segmentation results
(red contour) of supervised method (left) and our method
(right). Comparing with the segmentation contour achieved
by the supervised method (left column), the semisupervised
method fits more consistently with the ground-truth boundary.
The observation shows the effectiveness of our semisupervised
learning method, compared with the supervised method.

2) Effectiveness of TCSM and TCSM_v2: To show the effec-
tiveness of our proposed transformation-consistent method,
we conducted an ablation analysis of our method on the
dermoscopy image data set, as the results are shown in
Table II. The experiments were performed with randomly
selected 50 labeled data and 1950 unlabeled data, and tested
on the validation set. In the “Supervised” setting, we trained
the network with only 50 labeled data. “TCSM-ND” refers
to semisupervised learning with Gaussian noise and dropout
regularization. “TCSM-R” refers to semisupervised learning
with transformation-consistent regularization (only rotation),
and “TCSM” refers to the experiment with all of these
regularizations. As shown in Table II, both kinds of regu-
larizations independently contribute to the performance gains
of semisupervised learning. The resulting improvement with
transformation-consistent regularization is very competitive,
compared with the performance increment with Gaussian
noise and dropout regularizations. These two regularizations
are complementary, and therefore, when they are employed
together, the performance can be further enhanced.
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TABLE III

RESULTS OF OUR METHOD ON THE VALIDATION SET UNDER DIFFERENT
NUMBER OF LABELED/UNLABELED IMAGES (UNIT: %)

Moreover, we analyze the effects of shifting and scal-
ing operations. Shift (r ) denotes randomly shifting the
image by r ′W or r ′H , where r ′ ∈ [1 − r, 1 + r ], and
W and H denote the image width and height. Scale (r )
denotes randomly scaling the image to (r ′W, r ′H ), where
r ′ ∈ [1 − r, 1 + r ]. From the experiments in Table II,
we can see that random scaling with ratio 0.1 could improve
the semisupervised learning results, while other transforma-
tion settings have limited improvements. “TCSM_v2-NDR”
denotes the mean teacher-based semisupervised learning with
transformation-consistent strategy (only rotation). “TCSM_v2-
NDRScale” refers to the mean teacher based semisupervised
learning with our transformation-consistent strategy, including
both rotation and scaling. From these two comparisons, we can
see that the generalized form of transformation-consistent
strategy improves the semisupervised learning. “TCSM” and
“TCSM_v2-NDR” utilizes the same regularization. From these
two comparisons, we can find that the weight-averaged con-
sistency targets improve the semisupervised deep learning
results. Our final model achieves 75.24% JA and 83.44% DI,
surpassing the supervised baseline by 5.7% JA and 4.4% DI.

3) Results Under Different Number of Labeled Data:
Table III shows the lesion segmentation results of our TCSM
and TCSM_v2 (trained with labeled data and unlabeled data)
and supervised method (trained only with labeled data) under
a different number of labeled/unlabeled images. We draw
the JA score of the results in Fig. 6. It is observed that
the semisupervised methods consistently performs better than
the supervised method in different labeled/unlabeled data
settings, demonstrating that our method effectively utilizes the
unlabeled data and brings performance gains. Note that in all
semisupervised learning experiments, we train the network
with 2000 images in total, including labeled images and
unlabeled images. As expected, the performance of supervised

Fig. 6. Results on the validation set of the dermoscopy image data set with
different number of labeled/unlabeled data.

training increases when more labeled training images are
available; see the blue line in Fig. 6. At the same time,
the segmentation performance of semisupervised learning can
also increase with more labeled training images; see the
orange line in Fig. 6. The performance gap between supervised
training and semisupervised learning narrows as more labeled
samples are available, which conforms to our expectations.
When the amount of labeled data set is small, our method
can gain a large improvement, since the regularization loss
can effectively leverage more information from the unlabeled
data. Comparatively, as the number of labeled data increases,
the improvement becomes limited. This is because the labeled
and unlabeled data are randomly selected from the same data
set, and a large amount of labeled data may reach the upper
bound performance of the data set.

From the comparison between TCSM and TCSM_v2,
we can see that TCSM_v2 consistently improve TCSM under
different label and unlabeled settings. From the comparison
between the semisupervised method and supervised method
trained with 2000 labeled images in Fig. 6, it can be observed
that our method increases the JA performance when all labels
are used. The improvement indicates that the unsupervised loss
can also provide regularization to the labeled data. In other
words, the consistency requirement in the regularization term
can encourage the network to learn more robust features to
improve the segmentation performance.

4) Comparison With Other Semisupervised Segmentation
Methods: We compare our method with two latest semisuper-
vised segmentation methods [18], [56] in the medical imaging
community and an adversarial learning-based semisupervised
method [57]. In addition, we extend the semisupervised clas-
sification model [49] to segmentation for comparison. Note
that the method [19] for medical image segmentation adopts a
similar idea with the adversarial learning-based method [57].

For a fair comparison, we re-implemented their methods
with the same network backbone on this data set. All the
experiments utilized the same data augmentation and train-
ing strategies. We conducted experiments with the setting
of 50 labeled images and 1950 unlabeled images. Table IV
shows the JA performance of different methods on the valida-
tion set. As shown in Table IV, our method achieves 4.07%
JA improvement by utilizing unlabeled data. Compared with
other methods, we achieve the greatest improvement over the
supervised baseline. The comparison shows the effectiveness
of our semisupervised segmentation method, compared with
other semisupervised methods.
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TABLE IV

JA PERFORMANCE OF DIFFERENT SEMISUPERVISED METHODS ON THE
VALIDATION DATA SET OF THE DERMOSCOPY IMAGE DATA SET.

“SUPERVISED” DENOTES TRAINING WITH 50 LABELED

DATA (UNIT: %)

TABLE V

RESULTS ON THE TEST DATA SET IN THE ISIC 2017 DERMOSCOPY
LESION SEGMENTATION CHALLENGE (UNIT: %)

5) Comparison With Methods on the Challenge Leader-
board: We also compare our method with state-of-the-art
methods submitted to the ISIC 2017 skin lesion segmentation
challenge [53]. There are a total of 21 submissions, and
the top results are listed in Table V. Note that the final
rank is determined according to JA on the testing set. We
trained two models: TCSM_v2 and baseline. TCSM_v2 was
trained with 300 labeled images, and the left are utilized
as the unlabeled images. The baseline model is trained with
only 300 labeled data. Other methods use all labeled data as
the training data. The supervised model is denoted as our
baseline model. As shown in Table V, our semisupervised
method achieved the best performance on the benchmark,
outperforming the state-of-the-art method [58] with 1.6%
improvement on JA (from 76.5% to 78.1%). The performance
gains on DI and SE are consistent with that on JA, with
1.1% and 3.7% improvement, respectively. Our baseline model
with 300 labeled data also outperforms other methods due
to state-of-the-art network architecture. Based on this strong
baseline, our semisupervised learning method further makes
significant improvements, which demonstrates the effective-
ness of the overall semisupervised learning method.

D. Experiments on Retinal Fundus Image Data Set

We report the performance of our method for OD segmen-
tation from retinal fundus images. The 400 training images
from the REFUGE challenge [62] were randomly separated
into training and test data set with the ratio of 9:1. For a
semisupervised training model, only a portion of labels (i.e.,
10% and 20%) in the training set were used. We preprocessed
all the input images by subtracting the mean RGB values
of all the training data set. When training the supervised

TABLE VI

JA PERFORMANCE OF DIFFERENT METHODS ON THE FUNDUS IMAGE
DATA SET. “10%” AND “20%” DENOTE TRAINING WITH “10%” AND

“20%” LABELED DATA IN THE TRAINING SET, RESPECTIVELY.
“IMP” REFERS TO THE IMPROVEMENT OVER THE

SUPERVISED BASELINE

TABLE VII

DICE PERFORMANCE OF DIFFERENT SEMISUPERVISED METHODS ON THE

LITS DATA SET. “10%” AND “20%” DENOTE TRAINING WITH “10%”
AND “20%”LABELED DATA, RESPECTIVELY. “IMP” REFERS TO THE

IMPROVEMENT OVER THE SUPERVISED BASELINE

Fig. 7. Examples of our semisupervised (20%) segmentation results for the
fundus image and liver CT scans. Blue color denotes the segmented boundary
of OD and red color represents the segmented liver.

model, the loss function was the traditional cross-entropy loss,
and we used the SGD algorithm with learning rate 0.01 and
momentum 0.9. To train the semisupervised model, we added
the extra unsupervised regularization loss, and the learning rate
was changed to 0.001.

We report JA of the supervised and semisupervised results
under the setting of 10% labeled training images, and 20%
labeled training images, respectively. As shown in Table VI,
we also compare with the other semisupervised methods. It
can be observed that our method achieves 1.82% improvement
under the 10% labeled training set, which ranked top among
all these methods. In addition, the improvement achieved
by our method under the 20% training setting is also the
highest. Fig. 7 shows some visual segmentation results of our
semisupervised method. We can see that our method can better
capture the boundary of the OD structure.

E. Experiments on LiTS Data Set

For this data set, we evaluate the performance of liver
segmentation from CT volumes. Under our semisupervised
setting, we randomly separated the original 131 training data
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from the challenge into 121 training volumes and 10 testing
volumes. For image preprocessing, we truncated the image
intensity values of all scans to the range of [−200, 250] HU
to remove the irrelevant details. We run experiments with
3-D U-Net [38] to verify the effectiveness of our method.
For the 3-D U-Net, the input size is randomly cropped to
112 × 112 × 32 to leverage the information from the third
dimension.

According to the evaluation of the 2017 LiTS challenge,
we employed Dice per case score to evaluate the liver seg-
mentation result, which refers to an average Dice score per
volume. We report the performance of our method and the
other three semisupervised methods under the settings of 10%
labeled training images and 20% labeled training images,
respectively, in Table VII. We can see that our approach
achieves the highest performance improvement in both the
10% and 20% labeled training settings, with 5.33% and 5.72%
improvements, respectively. In semisupervised learning, it is
obvious that our method gains higher performance consistently
than other methods [18], [49], [56], [57] in both 10% and 20%
settings, respectively. We also visualize some liver segmenta-
tion results from CT scans in the second row of Fig. 7.

V. DISCUSSION

Supervised deep learning has been proven extremely effec-
tive for many problems in the medical image community.
However, promising performance heavily relies on the number
of annotations. Developing new methods with limited anno-
tation will largely advance real-world clinical applications. In
this article, we focus on developing semisupervised learning
methods for medical image segmentation, which have great
potential to reduce the annotation effort by taking advantage
of numerous unlabeled data. The key insight of our semisu-
pervised learning method is the transformation-consistent self-
ensembling strategy. Extensive experiments on three represen-
tative and challenging data sets demonstrated the effectiveness
of our method.

Medical image data have different formats, e.g., 2-D
in-plane scans (e.g., dermoscopy images and fundus images)
and 3-D volumetric data (e.g., MRI and CT). In this article,
we use both 2-D and 3-D networks for segmentation. Our
method is flexible and can be easily applied to both 2-D and
3-D networks. It is worth noting that recent works [4], [29]
are specifically designed for 3-D volume data by considering
three-view co-training, i.e., the coronal, sagittal, and axial
views of the volume data. However, we aim for a more general
approach that is applicable to 2-D and 3-D medical images. For
3-D semisupervised learning, it could be a promising direction
to design specific methods by considering the 3-D natural
property of the volumetric data.

Recent works on network equivariance [23], [30], [31]
improve the generalization capacity of trained networks by
exploring the equivariance property. E.g., Cohen and Welling
[30] presented a group equivariant neural network. Our method
also leverages the transformation consistency principle, but
differently, we aim for semisupervised segmentation. More-
over, if we trained these works, i.e., harmonic network [23],
in a semisupervised way to leverage unlabeled data, the

transformation regularization will have no effect ideally, since
the network outputs are the same when applying the transfor-
mation to the input images. Hence, the limited regularization
would restrict the performance improvement from unlabeled
data.

One limitation of our method is that we assume both labeled
and unlabeled data come from the same distribution. However,
in clinical applications, labeled and unlabeled data may have
different distributions with a domain shift. Oliver et al. [63]
demonstrated that the performance of semisupervised learning
methods could degrade substantially when the unlabeled data
set contains out-of-distribution samples. However, most of the
current semisupervised approaches for medical image segmen-
tation do not consider this issue. Therefore, in the future,
we would explore domain adaptation [10] and investigate how
to adapt it with a self-ensembling strategy.

In this article, the selection of transformation is based
on the property of neural networks. The convolution layer
is not rotation equivariant. To tackle the segmentation task,
we need to train the network to be rotation equivariant.
Moreover, the neural network is not scale equivariant due
to padding, upsampling, and so on. The rotation and scaling
transformations are the general transformations used in med-
ical images. Thus, learning to minimize the output differences
caused by these transformations will regularize the network
to be transformation-consistent. Our method is flexible to
extend to more general transformation cases, such as affine
transformations. The transformation-consistent module con-
sists of a transformation on the input image that will be fed
to the teacher model, and the same transformation on the
output space generated by the student model. It is flexible
without additional training costs to be applied to the neural
network. Moreover, recent automatic augmentation search
works [64]–[66] explored the best transformations for a spe-
cific data set. It is an interesting future work to explore more
useful transformations for our semisupervised segmentation
framework through automatic data augmentation. In addition,
the experiments reported are the averaged result over three
trials, which also indicate the robustness of our method.

VI. CONCLUSION

This article presents a novel and effective transformation-
consistent self-ensembling semisupervised method for medical
image segmentation. The whole framework is trained with a
teacher-student scheme and optimized by a weighted combi-
nation of supervised and unsupervised losses. To achieve this,
we introduce a TCSM for the segmentation task, enhancing
the regularization and can be easily applied on 2-D and
3-D networks. Comprehensive experimental analysis on three
medical imaging data sets, i.e., skin lesion, retinal image,
and liver CT data sets, demonstrated the effectiveness of our
method. Our method is general and can be widely used in
other semisupervised medical imaging problems.
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