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Abstract. Mitral valve repair is a very difficult operation, often requir-
ing experienced surgeons. The doctor will insert a prosthetic ring to
aid in the restoration of heart function. The location of the prosthesis’
sutures is critical. Obtaining and studying them during the procedure is
a valuable learning experience for new surgeons. This paper proposes a
landmark detection network for detecting sutures in endoscopic pictures,
which solves the problem of a variable number of suture points in the
images. Because there are two datasets, one from the simulated domain
and the other from real intraoperative data, this work uses cycleGAN to
interconvert the images from the two domains to obtain a larger dataset
and a better score on real intraoperative data. This paper performed the
tests using a simulated dataset of 2708 photos and a real dataset of 2376
images. The mean sensitivity on the simulated dataset is about 75.64 ±
4.48% and the precision is about 73.62 ± 9.99%. The mean sensitivity on
the real dataset is about 50.23 ± 3.76% and the precision is about 62.76
± 4.93%. The data is from the AdaptOR MICCAI Challenge 2021, which
can be found at https://zenodo.org/record/4646979#.YO1zLUxCQ2x.
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1 Introduction

In mitral valve repair, the surgeon repairs part of the damaged mitral valve
to allow the valve to fully close and stop leaking. The surgeon may tighten or
reinforce the ring around a valve by implanting an artificial ring. The surgeon
may place approximately 12 to 15 sutures on the mitral annulus [1]. We need
to know how sutures are placed because analyzing the pattern and distances
between them can help us improve the quality of this surgery. Furthermore,
the position of the sutures may aid the medico in learning how to perform this
surgery by reconstructing it in a 3D virtual environment.

Deep learning methods have been widely used in the field of medical images.
This task belongs to the landmark detection task in computer vision. In general,
people mainly use the heatmap-based [6] method, coordinate regression method,
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and patch-based method. Payer et al. [6] used the SpatialConfiguration-Net
which combines the local appearance of landmarks with their spatial configu-
ration. Because the coordinate regression method is too difficult to converge and
the patch-based method is difficult to distinguish adjacent points, we choose the
heatmap-based method.

Many state-of-the-art heatmap-based deep learning methods focus on detect-
ing fixed key points which are not suitable for our task. Stern et al. [9] proposed
a heatmap-based method to detecting a varying number of key points. Inspired
by that, we present an improved heatmap-based method that can deal with a
varying number of sutures and get better performance than that.

The data set is mainly split into two endoscopic sets. One is simulation data
set and the other is real data set. Inspired by Engelhardt et al. [2], we also
implement the image to image translation to get more real data. We use the
cycleGAN [11] network to do this task.

The work proposed a network to detect a varying number of landmarks and
used the cycleGAN to translate images from two different domains. And we are
participating within the scope of the AdaptOR challenge.

2 Materials and Methods

2.1 Data Set

Our data set comes from the AdaptOR challenge [8]. The data set is mainly split
into two endoscopic sets:

(1) Sim-Domain is the image acquired during simulating mitral valve repair on
a surgical simulator. More information on the simulator can be found in [3]
and [4]. The simulator dataset used for training consists of 2708 frames,
which were extracted from 10 surgeries. We divide it into 5 fold. To prevent
data leakage, dataset splitting was always carried out on the level of the
surgeries.

(2) Intraop-Domain is the Intraoperative endoscopic data from real minimally
invasive mitral valve repair. Since the intraoperative dataset consists of 2376
frames extracted from 4 simulated surgeries, we split it into 4 fold with each
surgery comprising one fold.

The Label of this data set is stored in the format of a JSON file. In addition,
the data splitting is shown in Table 1.

Table 1. Data set.

Domain Split Number of frames

f1 f2 f3 f4 f5

Sim Train 2246 2144 1960 2174 2308

Validation 462 564 748 534 400

Intraop Train 1582 1852 2004 1690 –

Validation 794 524 372 686 –
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2.2 Outline of the Proposed Method

We have a lot of simulated data, but we don’t have enough real data. So the
first step is the image to image translation. We use a cycleGAN to convert
simulated data to real data in order to obtain more real data, which will help
our model score higher on the real dataset. The second step is to generate the
heatmap. Unlike other tasks about landmark detection, which use one channel
for each landmark, we do not have fixed points in this task. So we generate all
the points in one channel. And each of them is a 2D Gaussian kernel. We do
some augmentation for both the original image and heatmap. Then the enhanced
images would be the input of the U-net-based [7] network. The corresponding
heatmap would be the label of the image. Then, we use the Otsu [5] to get the
thresholding image. We also Use the open operation to remove the noise in the
image and make the binarized area smoother. Finally, we use the cutting method
to separate very close points and the centroid of each region is taken as the final
result. All of these are shown in Fig. 1.

Fig. 1. Outline

2.3 Pre-processing

Image to Image GAN. In this task, our datasets come from two domains,
one is the simulation domain and the other is the Intraop domain. The data set
of the Intraop domain is smaller than the data set of the simulation domain. We
decided to transform the simulation domain data into Intraop domain data to
get a higher score on the Intraop domain. We introduced cycleGAN to solve this
problem.
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The cycleGAN has two mapping functions, as shown in Fig. 2, one is G and
the other is F. G transforms the image of X domain into the image of Y domain,
and F transforms the image of Y domain into the image of X domain. Two
discriminators identify the real domain image and the generated image.

Fig. 2. CycleGAN

Applied to this task, the overall flow is shown in Fig. 3. This diagram only
shows the process from the simulation domain to the Intraop domain and vice
versa, which is not shown here.

Fig. 3. CycleGAN in this task

Heatmap. Unlike the traditional landmark detection method, we do not gener-
ate a heatmap for each point but generate all the points onto the same heatmap.
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Because in other tasks, the number of feature points is fixed, while in our task,
the number of feature points varies with the image, ranging roughly from 0 to
15.

Each of our points is a 2D Gaussian kernel, and a variable number of points
make up this heatmap, which will be used as the model’s label. The heatmap is
shown in Fig. 4.

Fig. 4. Heatmap

Data Augmentation. During training the images are randomly augmented
using Albumentations functions: horizontally and vertically with a probability
of 50%, rotation of ±40◦, ColorJitter with a probability of 50%, RandomBright-
nessContrast with a probability of 50%.

2.4 Point Detection

This work uses a U-Net-based architecture with a depth of 5. After each 3 × 3-
convolution, batch normalization is applied. The first convolutional layer has
16 filter maps, while the bottleneck layer has 512 filter maps. We choose the
Resnext [10] network as our encoder. We don’t have an activation function after
the final 1 × 1-convolutional layer while training, but we apply the sigmoid
function when we predict the heatmap. The loss function is dice loss.

The input images are RGB images with 3 channels. One channel output
is the heatmap. The heatmap becomes the real output point after a series of
subsequent operations.

2.5 Post-processing

Otsu. The maximum between-class variance method is a nonparametric and
unsupervised method of automatic threshold selection for picture segmentation.
According to the gray characteristics of the image, the image is divided into
background and objects. Among them, the greater the variance between the
background and objects shows that the difference between the two parts of the
image is also greater. This method calculates the relationship between the aver-
age gray level between background pixels and foreground pixels and their pro-
portion in the whole image, so as to obtain the global threshold when the image
segmentation effect is the best, and finally segment the image according to this
value.
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Opening. We discovered that the network’s predicted images were connected
together in blocks that should have been separated after Otsu. The open oper-
ation is used to separate them. This also smoothes the edges of the segmented
blocks and removes some of the noise.

Centre Mass and Cutting. After the opening process, we identify the cen-
troid of each segmented block in the output image, and these are regarded the
final predicted points, but we discovered that the form of some of these blocks
compared to the circle generated by the point in the heatmap image is somewhat
irregular. Therefore, we assess whether a segmentation block should be clipped
depending on whether the area of each segmented block in an output image
exceeds the average value of all its segmented blocks. Then, based on the height
and width of the segmented blocks’ bounding box, decide the cutting direction.
The cutting point is the centroid of the segmented blocks that need to be sliced.
Cutting is done in the x-axis direction if the bounding box’s height is higher than
its width. If the bounding box’s height is less than its width, the cutting is done
using Cut in the y-axis direction. We recalculate the centroid of the partitioned
block after cutting as the output points and save them in JSON files.

The example of post-processing is shown in Fig. 5.

Fig. 5. Example of post-processing. (a) input, (b) predict, (c) Otsu, (d) opening, (e)
Centre mass and Cutting

2.6 Evaluation

A point detection is considered successful if the centres of mass of ground truth
and prediction are less than 6 pixels apart. On an image of size 512 × 288, this
radius roughly corresponds to the thickness of a suture when it enters the tissue.
Every matched point from the produced mask is considered a true positive (TP).
Predicted points that could not be matched to any ground truth point are defined
as false positives (FP) and all ground truth points without a corresponding
point in the produced mask are false negatives (FN). Precision and sensitivity
are computed over all landmarks. And F1-score presents the harmonic mean of
precision and sensitivity.

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(3)
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3 Results

There are some visual examples in Fig. 6(a) and Fig. 6(b).

Fig. 6. Example results of two domain. The green circles are true positives (TP). The
red circles show false positives (FP). The yellow circles represent false negatives (FN).

The result of the simulation domain is shown in Table 2, and the result of
the intraop domain is shown in Table 3.

The baseline results come from this paper [9]. We can not calculate the
standard deviation of the baseline F1 score since the baseline does not give
experimental data for F1 score.

As shown in Tables 2 and 3, while our precision is lower than the baseline, our
sensitivity is much higher. As a result, when comparing F1 scores, our method
outperforms the baseline on both the simulation and intraop domains. Because
the images in the intraop domain have more interference factors and less data,
the recognition effect of the two methods in the intraop domain is slightly inferior
to that of the simulation domain.

Table 2. Simu result.

Cross-validation result on Simu data

Metric Model f1 f2 f3 f4 f5 μ ± σ

Precision Baseline – – – – – 81.50 ± 5.77

Ours 84.37 54.79 76.84 74.18 77.89 73.62 ± 9.99

Sensitivity Baseline – – – – – 61.60 ± 6.11

Ours 79.63 72.25 68.64 80.20 77.48 75.64 ± 4.48

F1 score Baseline – – – – – 69.78

Ours 81.94 62.33 72.51 77.07 77.69 74.31 ± 6.69
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Table 3. Intra result.

Cross-validation result on Intra data

Metric Model f1 f2 f3 f4 μ ± σ

Precision Baseline – – – – 66.68 ± 4.67

Ours 62.24 67.35 54.92 66.54 62.76 ± 4.93

Sensitivity Baseline – – – – 24.45 ± 5.06

Ours 51.81 54.44 44.22 50.45 50.23 ± 3.76

F1 score Baseline – – – – 35.78

Ours 56.56 60.22 48.99 57.38 55.79 ± 4.15

4 Conclusions

We present a novel method for predicting multiple key points in endoscopic
images in this paper. Our method differs from traditional key point detection
methods, which have a fixed number of prediction key points. Our method can
detect multiple key points at the same time, significantly reducing detection time
and model calculation. We also introduce cycleGAN, which can interconvert
images from two domains to create a larger dataset. Our results outperform
the baseline as well as other related methods after many repeated and rigorous
experiments.
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