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Abstract
Purpose: We developed a novel dose verification method using a camera-
based radioluminescence imaging system (CRIS) combined with a deep
learning-based signal processing technique.
Methods: The CRIS consists of a cylindrical chamber coated with scintillator
material on the inner surface of the cylinder, coupled with a hemispherical mir-
ror and a digital camera at the two ends. After training, the deep learning model
is used for image-to-dose conversion to provide absolute dose prediction at
multiple depths of a specific water phantom from a single CRIS image under
the assumption of a good consistency between the TPS setting and actual
beam energy.The model was trained using a set of captured radioluminescence
images and the corresponding dose maps from the clinical treatment planning
system (TPS) for the sake of acceptable data collection.To overcome the latent
error and inconsistency that exists between the TPS calculation and the cor-
responding measurement, the model was trained in an unsupervised manner.
Validation experiments were performed on five square fields (ranging from 2 × 2
to 10 × 10 cm2) and three clinical intensity-modulated radiation therapy (IMRT)
cases. The results were compared to the TPS calculations in terms of gamma
index at 1.5, 5, and 10 cm depths.
Results: The mean 2%/2 mm gamma pass rates were 100% for square fields
and 97.2% (range from 95.5% to 99.5%) for the IMRT fields. Further validations
were performed by comparing the CRIS results with measurements on various
regular fields.The results show a mean gamma pass rate of 91% (1%/1 mm) for
cross-profiles and a mean percentage deviation of 1.15% for percentage depth
doses (PDDs).
Conclusions: The system is capable of converting the irradiated radiolumines-
cence image to corresponding water-based dose maps at multiple depths with
a spatial resolution comparable to the TPS calculations.
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1 INTRODUCTION

The rapid development in precision radiation therapies
such as intensity-modulated radiation therapy (IMRT)
and volumetric modulated arc therapy (VMAT) dramat-
ically increases the demands for accurate and effi-
cient pretreatment dosimetric quality assurance (QA).
The verification is typically implemented by comparing
plan-calculated dose distributions or intensity maps,with

those measured using QA devices, such as 2D array
with diodes, ionization chambers, radiographic films,and
so forth. Radiographic film dosimetry has the advan-
tage of low introduction cost and high spatial resolution
measurement but is a labor-intensive method.On-board
electronic portal imaging device (EPID)-based dose ver-
ification has been popular in recent years benefiting
from its wide availability, quick setup, and high image
quality.1 Limited by the on-board mounting manner, they
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do not provide independent measurement that allows
for end-to-end type verification on image-guided treat-
ments, in which the QA device should be independent
of treatment system and the QA procedure should fol-
low the patent treatment procedure including simula-
tion, plan creation, and plan delivery phases.2 Detector
array-based devices, such as ArcCHECK (Sun Nuclear
Corporation, Melbourne, FL, USA), extend the indepen-
dent measurements with coplanar detection ability to
enable verifications on linac gantry angle.3,4 However,
the current pixel pitch (∼0.7 cm for ArcCHECK) could
be marginal to meet a stringent passing criterion, espe-
cially for small field measurements in stereotactic radio-
surgery applications. Challenges still remain when good
spatial resolution, digitalized acquisition, and indepen-
dent measurement are jointly considered.

Camera-based radioluminescence imaging has been
proposed as a low-cost yet promising alternative for QA
applications.5–8 In reality, however, radioluminescence
imaging suffers from adverse influence of radiolumi-
nescence photon scattering, leading to blurred field
edges and mirror-glare artifacts that make it difficult
for accurate dosimetric measurements. Flat-field cor-
rections are traditionally used to remove the artifacts,
which,however,are highly dependent on beam energies
and location in the detector’s field of view. The relation
between the radioluminescence image and the corre-
sponding dose map is mathematically analogous to a
convolution process.1,9 In the past, various approaches
were proposed in kernel-based approach. Most studies
assumed that the dose kernel is spatially invariant
and angularly isotropic when homogeneous medium
is considered.7,9,10 Brost and Watanabe advanced the
field by developing region-based kernels calculated
in sparsely partitioned subregions.11 Alhazmi et al.
proposed an EPID-based 3D dosimetry using a mod-
ified back-projection algorithm, where the volumetric
dose was converted slice-by-slice from an input EPID
image that was pre-proceeded with a series of rigor-
ous calibrations.12 Image-to-dose conversion was also
implemented using neural networks. Liu et al. used a
three-layer network to correct the dose profile mea-
sured by diode detector that suffered from the volume-
averaging effect.13 This method was further advanced
by Cheon et al. to achieve 2D dose prediction from
radioluminescence images using a shallow convolution
neural network (CNN), which demonstrated the out-
performance of using CNN to typical deconvolutions.8

Nevertheless, conventional deep learning models could
be problematic for certain dosimetric applications due
to limited scalability of conventional approaches in
handling more than two domains, which is desired
(dose at different depths) in certain scenarios, for
example, 3D dosimetry.9 A deep learning model that
relates image to multiple domains (depths) without
going through the hassle of multiple training is highly
desirable.

The purpose of this work is to develop a dose pre-
diction strategy for a camera-based radioluminescence
imaging system (CRIS) to circumvent the challenges in
existing dosimetric tools as mentioned above. The CRIS
innovatively involves a cylindrical sensing receptor to
allow for a coplanar detection fashion similar to a volu-
metric dosimeter such as ArcCHECK, while maintaining
a spatial resolution as high as that of an EPID (0.5 mm).
The specific geometric design in turn complicates the
dose response function both mathematically and phys-
ically in the following aspects: (i) diversity of incident
beam angle on a curved surface; (ii) nonuniformity of
optical coupling efficiency due to the perspective view
and the vignetting effect; and (iii) complexity of physics
behind the interreflections between the hemispheric
mirror and the phosphor screen (i.e., the mirror-glare
artifacts). The downstream task of traditional image-to-
dose conversion would be thus challenged in terms of
reliability, practicability, and robustness. Benefiting from
the high nonlinearities in a CNN that enables to approx-
imate the mapping physics with increased flexibility and
accuracy, a data-driven learning model is established
to effectively relate CRIS image to the desired absolute
dose distribution in a specific water phantom, named as
functional generative adversarial network (fGAN). The
training ground-truths are those calculated in the treat-
ment planning system (TPS),which facilitate the acquisi-
tion of high-resolution dose maps at multiple depths and
therefore benefits for translational applications. In view
of the latent error and inconsistency such as the field
geometry, fGAN is trained in an unsupervised manner
that originally aims at training with unpaired images.14

Compared to simple pixel-wise mapping, the advan-
tage of the unsupervised training is that it essentially
enables learning on abstractive features (e.g., blurring
behavior in the penumbra region) that are less sensitive
to field geometry variations. The technique is applied to
a series of regular fields and three clinical IMRT cases,
and the results are compared with TPS counterparts.

2 METHOD AND MATERIALS

2.1 Design of radioluminescence
imaging system

2.1.1 Hardware design

Hardware design of the radioluminescence imag-
ing system is shown in Figure 1. The inner sur-
face of a 3D-printed cylindrical chamber is coated
with a Gd2O2S-based scintillator material, which emits
545 nm light upon interaction with the megavoltage
(MV) photons.15–17 The radiation-induced light from the
scintillator-coated layer is reflected by a hemispheric
mirror mounted at far end of the cylinder, which pro-
vides a panoramic view of the chamber inner wall and
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F IGURE 1 (a) Schematic diagram of the developed camera-based radioluminescence imaging system (CRIS) phantom, and (b)
experimental setup. The system consists of a cylindrical receptor with its inner surface coated with scintillator, a hemispheric mirror mounted at
the cylinder end, and a camera at the opposite end to capture the luminescence signals from the inner surface of the cylinder. The main
dimensions are indicated in unit of millimeter

F IGURE 2 (a) Diagram showing the calibration procedure of camera-based radioluminescence imaging system (CRIS) image, (b) locations
used to estimate the modulation transfer functions (MTFs), and (c) the system MTFs with the corresponding line spread functions (LSF) inserted

recorded by a CMOS camera with 1920 × 1200 pixel
(GS3-PGE-23S6M-C, Point Grey Research, Inc., Rich-
mond, Canada) mounted at the other end of the cylin-
der. By aligning the central axis of the hemispheric mir-
ror to that of the cylinder, the CRIS provides a consistent
beam’s eye view for all the gantry angles.

2.1.2 System calibration

A diagram showing the calibration process is presented
in Figure 2a. The system was sequentially calibrated
with dark-field and flat-field (a field of 15 × 15 cm2

was delivered) corrections. To perform geometrical
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F IGURE 3 Architecture of the proposed fGAN, consisting of two identical generators (G1 and G2) and two identical discriminators (D1 and
D2). G1 takes input from both radioluminescence image x and a target domain label vector (cn|n > 0) to a synthesize dose map at a desirable
depth, that is, G1(x, cn). By passing a predicted target image and a source domain label c0 into G2, the source image is reconstructed, that is,
G2(G1(x, cn), c0) and used to formulate a cycle consistency loss cyc. The discriminators play dual roles: (i) a real/fake identifier, which
contributes to adv, and (ii) a domain classifier to evaluate the similarity between the predicted dose map and the ground truth at every depth,
which contributes to clc

restoration, a chessboard was overlaid to the scintillator
sheet and the captured scintillation image was ana-
lyzed with OpenCV to automatically extract the corner
points, which were then cubically interpolated to form a
deformable field for nonrigid transformation. To quantify
spatial frequencies that can be resolved versus loca-
tions at various radial distances (see Figure 2b), that
is, rad1 = 30.8 mm, rad2 = 44.9 mm, rad3 = 64.1 mm,
and rad4 = 88.0 mm, the calibrated chessboard image
was analyzed to obtain modulation transfer functions
(MTFs). Results are shown in Figure 2c, where the
line spread functions (LSFs) are insert correspond-
ingly in the subplot. Spatial resolutions achievable are
related to the inverse of the MTF function where there
is measurable amplitude, and here it was taken as
10% of the maximum. Results show that the system
maintains spatial resolutions of 0.47, 0.38, 0.35, and
0.30 mm for locations at rad1, rad2, rad3, and rad4,
respectively. Calibrated images still suffer from edge
blurring, mirror-glare artifacts, and residual nonunifor-
mity issues caused by light scattering, which will be
mitigated using the deep learning model. To maintain
reasonable signal-to-noise ratio and save the memory
usage, the camera runs at five frames per second.

2.2 Deep learning model for
image–dose conversion

2.2.1 Functional GAN (fGAN)

Figure 3 shows the pipeline of the proposed fGAN,
which takes advantages of the powerful adversarial
learning mechanism in the prediction of dose maps.18

While dose maps at different depths are deemed to
belong to different image domains, our goal is to train a
single network that learns a one-to-many domain trans-
lation. In brief, the architecture consists of two identical
generators (G1 and G2) and two discriminators (D1 and
D2). G1 takes input from both radioluminescence image
and target domain labels (cn) to synthesize dose maps
at multiple depths.By passing a predicted dose map and
the corresponding source label (c0) into G2, a radiolumi-
nescence image is reconstructed and used to formulate
a cycle consistency loss. In fact, an identical G is used
for both G1 and G2. Meanwhile, the discriminators play
dual roles: a real/fake identifier and a domain classifier.
An identical discriminator (D) is employed for both D1
and D2.

Generator
Every generator (G1 and G2) is composed of three sub-
networks, an encoder, a decoder, and a feature extractor.
To enable dose prediction at a target depth, G1 is
trained to translate an input image x into an output dose
map G1(x, cn) conditioned on the target domain label
cn (n > 0),which is a one hot vector with a single bit iden-
tifying the nth depth. The domain label is integrated into
the encoder–decoder framework via a feature extractor.
Specifically, each element in the one hot vector is repli-
cated to form a uniform matrix with the same size as
the input x, yielding a matrix stack (with number of the
stack layers equal to the vector length) imported into
the feature extractor to elicit the abstractive information.
Similarly, G2 is trained to reconstruct the radiolumines-
cence image G2(G1(x, cn), c0) from the corresponding
predicted dose map G1(x, cn) and a source domain
label c0 using the same encode–decoder architecture.
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Notice that a unified G is used for both G2 and G2,
benifiting from the flexible translation ability of the
network. A cycle consistency loss is achieved by com-
paring the reconstructed image and the original image.
By importing images from various domains, the encoder
learns domain-invariant features that are shared by all
domains (e.g., the primary beam shape and content) as
well as domain-specific features that are functions of
depth. Subsequently, with the target depth fed into the
decoder, the dose map at a specific depth is predicted
with domain-specific and domain-invariant features
incorporated as a prior information. The disentangled
learning of feature representation and manipulation
via respective encoding and decoding is achieved by
integrating the domain label into the decoder, which has
been demonstrated to benefit image synthesis.19,20

Discriminator
Similar to G, two identical discriminators, D1 and D2, are
responsible for evaluating the dose map prediction and
radioluminescence image reconstruction, respectively.
In a conventional GAN, D serves as a real/fake identi-
fier to distinguish the generated images from the ground
truth. In the one-to-many domain translation problem, D
has two responsibilities. First, in every target domain cn,
D differentiates predicted dose maps (G1(x, cn)) from
the ground truth (yn), which is similar to the discrim-
inator in a conventional GAN. Moreover, D acts as a
multidepth discriminator or a domain classifier that esti-
mates the similarity between G1(x, cn) and every yn.For
this purpose, we modify the last fully connected layer
in D to export a one-hot vector c′n that contributes to a
classification loss cls. Furthermore, we select an ele-
ment (c′n(n)) from the predicted one hot vector to make
a real/fake assessment for the predicted G1(x, cn) that
results in an adversarial loss adv. The above two quan-
tities (c′n(n) and c′n) are typically produced by a discrim-
inator consisting of two components in cross-domain
networks.20,21

The top layers of D are transferred from a VGG16
network to provide low-level features, which are aimed
to pay attention to interdomain information (e.g., the
distribution in the penumbra regions). The VGG16 is
pretrained for a classification task using the ImageNet
database.22 Figure 4 shows a CRIS image and the cor-
responding feature map, the latter of which is the inte-
gration of output from the convolutional layer before the
fourth maxpooling in the VGG16 and nominated as 𝜙4.In
𝜙4,pixels with an intensity larger than 50% maximum are
observed inside the pernumbra regions,where the inter-
domain information can be extracted.7,8 By adversarially
learning of the interdomain information, both the image
quality and rate of convergence can be improved.23

Loss functions
In fGAN, there are three loss functions involved: a per-
ceptual adversarial loss adv, a classification loss cls,

F IGURE 4 (a) The raw measurement of camera-based
radioluminescence imaging system (CRIS), and (b) its representation
in feature space, extracted from the convolutional layer before the
fourth maxpooling layer in a pretrained VGG16. The extracted
features were taken as input of the discriminator in fGAN

and a cycle consistency loss cyc.adv is formulated as

adv = 𝔼y
[
log D(n)

(
Φ4

(
ycn

))]
+𝔼x

[
log

(
1 − D(n) (Φ4 (G1 (x, cn)))

)]
,

(1)

where D(n) outputs an element (c′n(n)) of the one hot
vector (i.e., c′n output by D) that evaluates the similarity
between the synthetic dose map and the corresponding
groundtruth yn at a depth specified by cn. In the train-
ing of fGAN, the radioluminescence image and the TPS
dose map that corresponds to the same irradiation field
(i.e.,paired data) are used as opposed to a typical unsu-
pervised learning, which is demonstrated to effectively
enhance the synthesis.cls is expressed as the sum of
two cross-entropies calculated for the real dose maps
and the synthetic ones, respectively,

cls = −
∑N

n=1 cn log D
(
Φ4

(
ycn

))
−
∑N

n=1 cn log D (Φ4 (G1 (x, cn))).
(2)

The cycle consistent loss cyc is intended to minimize
the difference between a reconstructed radiolumines-
cence image G2(G1(x, cn), c0) and the input x:

cyc = 𝔼x
[‖G2 (G1 (x, cn) , c0) − x‖1

]
, (3)

where ‖ ⋅ ‖1 is l1-norm. cyc is used to guarantee that
the predicted dose maps preserve the content of their
input radioluminescence images, while changing only
the interdomain part of the inputs. In this manner, an
unsupervised learning that avoids traditional end-to-end
fashion is applied to enforce attentions on both the high-
frequecy structures and low-dose contents (demon-
strated later). Finally, the total objective is{

D = −adv + 𝜆clscls

G = adv + 𝜆clscls + 𝜆cyccyc
, (4)

where 𝜆cls and 𝜆cyc are hyperparameters that bal-
ance the contributions from classification loss and
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consistency loss, respectively. In Equation (4), the
domain classification loss (cls) is actually reduced to∑

n −cn log D(𝜙4(yn)) (as a function of the real CRIS
images) in the calculation of D, and reduced to∑

n −cn log D(𝜙4(G(x, cn))) (as a function of the pre-
dicted dose maps) in the calculation of G.

2.2.2 Architecture and training of the
network

The generator G has an encoder–decoder structure
similar to that in,24 using a scaling factor of two. The
decoder involves six residual blocks at the top. The fea-
ture extractor is constructed using the same structure
as the encoder with the number of input channels equal
to that of the desirable domains. Instance normalization
and LeakyReLU activation with 𝛼 = 0.2 are used.25 The
discriminator D is based on a VGG structure in which the
top layers are transferred from a pertained VGG16 and
the last linear layer is modified to output a vector of size
N.The subnetworks (G and D) were sequentially trained
at each epoch to minimize G and D in Equation (4)
until the model converges.𝜆cls and 𝜆cyc were empirically
set as 0.5 and 1, respectively. During the training pro-
cess, the VGG16 top layers in D were frozen, while the
subsequent layers keep trainable to yield the high-level
features. All the images and dose maps were resized
to 320 × 320. The batch size was set to 12. The whole
framework is built on PyTorch with an NVIDIA TITAN V
GPU. We trained our model with the Adam optimizer by
setting β1 = 0.5 and β2 = 0.999.26 The learning rate was
initialized as 10−4 and linearly decayed after half of the
training epochs (150). The training time of the network
was around 12 h and the inference time was 0.05 s per
image. During the training process, the one hot domain
label vector was generated randomly. The image pairs
were augmented with random rotations within a range
of 15◦.

2.3 Data collection

A LINAC (Varian Clinac 2100 CD, Varian Medical Sys-
tems, USA) equipped with Millennium MLC was used
for all the experiments with photon energy of 6 MV and
dose rate of 600 monitor units per minute (MU/min).
Before measurement, the machine performance was
checked following the AAPM TG142.27 The radial sec-
tion of CRIS phantom was centered to the LINAC
isocenter. Dose calculations were conducted in Eclipse
(Varian Medical Systems, Palo Alto, CA, USA) using
the anisotropic analytical algorithm (version 15.6.05),
and the plane dose was exported at a resolution of
0.29 mm. The calculation was performed for a cubic
water phantom (45 × 45 × 45 cm3) constructed in
the TPS with a source-to-surface distance (SSD) of

100 cm. For all the experiments, the CRIS settings were
fixed to maintain a dynamic range of ∼57 dB (80%
of that of the CMOS camera used) to ameliorate the
latent nonlinearities when CMOSs near the physical
saturation. The measured dataset is divided for network
training and validation.

The training dataset involves 58 shapes (see Fig-
ure 5).The circular and comb-like shapes were designed
to learn the intra- and interleaf features, respectively.
The measurement was taken for multiple collimator
rotations ranging from 0◦ to 180◦ at a step size of 15◦.
That is, at 12 MLC rotations angles, 12 × 58 images
were taken in all. The gantry angle was fixed to 0◦

during the data collection process. Dose was calculated
in the TPS at the depths of 1.5, 5, and 10 cm, and the
model was trained for the three depths. The test dataset
consists of regular fields and three clinical IMRT cases.
The regular fields include a set of MLC-shaped square
fields: 2 × 2, 4 × 4, 6 × 6, 8 × 8, and 10 × 10 cm2.
The clinical IMRT cases include a brain, a lung, and a
prostate case, with the number of fields (and step-and-
shot segments) being six (136), six (142), and seven
(77), respectively. The ranges of field sizes are 8.0 ×

7.5–13.0 × 8.0 cm2, 8.0 × 6.5–11.5 × 7.0 cm2, and 9.0
× 6.5–11.1 × 6.5 cm2, for the brain, lung, and prostate
cases, respectively. The predicted dose was calibrated
to the TPS calculation for a 10 × 10 cm2 field at a depth
of 10 cm. A linear relation was assumed between the
predicted and calculated doses, with the scaling factor
determined from the calibration.

As an additional independent validation to our work,
measured dose profiles and percentage depth doses
(PDDs) were used to compare with CRIS results. Dose
profiles were acquired using an IC Profiler (Sun Nuclear
Corporation, Melbourne, FL, USA) at a depth of 1.5 cm
for field sizes of 2 × 2, 4 × 4, 6 × 6, 8 × 8, and 10 ×

10 cm2.PDDs for the field sizes of 4 × 4,6 × 6,and 10 ×
10 cm2 were acquired using an ion chamber in a water
phantom (IBA water scan system).

2.4 Evaluation metrics

The predicted dose maps were evaluated by comparing
to the corresponding TPS calculations in terms of global
gamma index (ϒ).28 The gamma passing rates were cal-
culated (ϒpass) using gamma criteria of 1% (global inten-
sity)/1 mm (distance-to-agreement) and 2%/2 mm with
a low-dose cutoff threshold value of 10%.

3 EXPERIMENTS AND RESULTS

3.1 Dose prediction for regular fields

Figure 6 shows an example of 6 × 6 cm2 field. The
images are displayed in log-scale to reveal the details
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F IGURE 5 Training dataset includes MLC-defined (a) circular and (b) comb-like fields. The two designs are intended for learning
disentangled features regarding content and edge. These images presented were collected by using the camera-based radioluminescence
imaging system (CRIS)

F IGURE 6 Dose prediction for a 6 × 6 cm2 open field at a water depth of 10 cm. (a) Raw measurement collected from our camera-based
radioluminescence imaging system (CRIS), (b) predicted dose map, (c) TPS calculation, (d) intensity profiles along the yellow dashed line in (a),
and (e) gamma map of the prediction (2%/2 mm). Images are displayed in log-scale

in the penumbra regions. In this case, the mirror-glare
artifacts can be observed on top of radioluminescence
images, as indicated with a red arrow in Figure 6a. In
the cross-beam profiles shown in Figure 6d, the artifacts
lead to a 10% deviation relative to the maximum dose.
These artifacts are eliminated in the predicted dose map
(Figure 6b), which has a 100% ϒpass (2%/2 mm) as
shown in Figure 6e (ϒ < 1 for all the pixels). More quan-
titative analysis on fields of 2 × 2, 4 × 4, 6 × 6, 8 × 8, and
10 × 10 cm2 at depths of 1.5 and 10 cm are listed in
Table 1. All ϒpass reach 100% with 2%/2 mm criteria and
exceed 99% for more stringent 1%/1 mm.In comparison,
the raw images have mean ϒpass of 80.5% (2%/2 mm)

and 61.9% (1%/1 mm) comparing with the dose maps
at a depth of 1.5 cm, and 87.6% (2%/2 mm) and 60.7%
(1%/1 mm) at a depth of 10 cm. ϒpass in the raw data
are found inversely related to the field size.For example,
the mean ϒpass (2%/2 mm) is 99.0% for 2 × 2 cm2 and
reduces to only 47.3% for 10 × 10 cm2.

3.2 Dose prediction for IMRT cases

We further investigated three IMRT treatment plans
delivered at a gantry angle fixed to 0◦. As an exam-
ple, the predicted dose at a depth of 10 cm for the last
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TABLE 1 Gamma analysis of predictions and raw images (in bracket) for regular open fields

Depth
(cm) 2 × 2 cm2 4 × 4 cm2 6 × 6 cm2 8 × 8 cm2 10 × 10 cm2

1%/1 mm 1.5 99.5% (92.1%) 99.9% (81.0%) 100% (57.4%) 100% (48.2%) 100% (30.6%)

10 99.7% (75.1%) 99.9% (69.9%) 100% (69.8%) 99.3% (60.1%) 99.9% (28.4%)

2%/2 mm 1.5 100% (98.7%) 100% (96.3%) 100% (78.8%) 100% (86.7%) 100% (41.8%)

10 100% (98.2%) 100% (97.5%) 100% (98.0%) 100% (91.2%) 100% (52.8%)

F IGURE 7 Dose prediction for a prostate intensity-modulated radiation therapy (IMRT) case (Field 7) at a water depth of 10 cm. (a) Raw
measurement collected from our camera-based radioluminescence imaging system (CRIS), (b) predicted dose map, (c) TPS calculation, (d)
intensity profiles along the yellow dashed line in (a), and (e) gamma map of the prediction (2%/2 mm). Images are displayed in log-scale

field of the prostate case is presented in Figure 7. The
mirror-glare artifacts indicated with a red arrow are vis-
ible in a similar position to that in Figure 6a, accounting
for a profile deviation of 4% as shown in Figure 7d. Fig-
ure 7e shows the gamma map using 2%/2 mm criterion,
where moderate deviations on ϒ (∼0.5) can be found in
the low-dose regions surrounding the primary beam. By
checking the TPS settings,these regions are mostly cov-
ered by the secondary collimator jaws. The quantitative
results of the three IMRT plans with 2%/2 mm gamma
criteria are summarized in Table 2 for depths of 1.5 and
10 cm. The last column shows the mean gamma pass
rates over the total fields in each plan. Single-field pass-
ing rate ranges from 91.8% to 99.5%,with mean passing
rate all above 95%.

3.3 Comparison to measurement

Figure 8a shows the predicted cross-beam dose pro-
files along the X and Y directions for MLC-shaped fields
of 2 × 2, 4 × 4, 6 × 6, 8 × 8, and 10 × 10 cm2.

The data obtained from TPS and the measurements
via the IC profiler are also plotted for comparison. The
gamma pass rates with 1%/1 mm and 2%/1 mm criteri-
ons are shown in Table 3. For objective comparison, the
1D gamma index was calculated with a low-dose cut-
off threshold value down to 1%. It can be found that the
predictions agree well with the corresponding TPS cal-
culations with 100% pass rates,and maintain mean pass
rates of 95.0% (X-direction) and 87.0% (Y-direction)
with respect to the measurements. In the latter case,
small discrepancies are observed in the shoulder and
trail regions of the profiles, presumably because of the
ion chamber array has more volume averaging effects
and lateral scatter equilibrium problems due to the air
cavities of the air-filled ion chamber array. We further
compare the PDD results among predictions, TPS cal-
culations, and the measurements for field sizes of 4 ×

4 cm2 (top), 6 × 6 cm2 (middle), and 10 × 10 cm2 (bot-
tom), as shown in Figure 8b and quantized in Table 4 in
terms of percentage deviation that was defined as the
ratio between the predictions and TPS calculations or
measurements at 1.5, 5, and 10 cm depths. On average,
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TABLE 2 Gamma analysis (2%/2 mm) on three intensity-modulated radiation therapy (IMRT) cases

Depth
(cm)

Field
1 (%)

Field
2 (%)

Field
3 (%)

Field
4 (%)

Field
5 (%)

Field
6 (%)

Field
7 (%)

Mean
(%)

Brain 1.5 97.2 99.3 95.9 97.3 94.8 99.8 N/A 97.4

10 98.9 99.6 91.8 94.4 93.2 97.9 N/A 96.0

Lung 1.5 92.7 96.8 99.3 97.8 96.9 95.2 N/A 96.5

10 93.1 95.8 98.3 94.4 93.2 97.9 N/A 95.5

Prostate 1.5 99.0 98.8 99.3 99.3 99.5 99.1 99.3 99.2

10 98.8 99.4 98.8 99.5 98.5 99.2 99.3 98.7

F IGURE 8 (a) Dose profiles along X (left) and Y (right) directions obtained with prediction, TPS and measurement for field sizes of 2 × 2, 4
× 4, 6 × 6, 8 × 8, and 10 × 10 cm2, and (b) percentage depth dose curves for field sizes of 4 × 4 cm2 (top), 6 × 6 cm2 (middle), and 10 × 10 cm2

(bottom). X and Y directions are defined in Figure 6(a)

the predictions were reported within 0.40% and 1.15%
of the results from TPS calculations and IC profiler mea-
surements, respectively.

4 DISCUSSION

4.1 Verification of failure deliveries

The capability to detect a failure during the treatment
was demonstrated. To this end, 20 MLC leaf pairs with
various displacement errors (d) were used to deliver a

field of 100.0 × 100.0 mm2, as depicted in Figure 9a.
The fields were delivered four times with d = 1, 2, 3, and
4 mm. The reference dose map is shown for a normal

TABLE 4 Percentage deviations of predicted PDD relative to
TPS counterparts (ΔPDDTPS) and measurements (ΔPmeas) for
various fields

4 × 4 cm2 6 × 6 cm2 10 × 10cm2

ΔPDDTPS 0.41% 0.30% 0.39%

ΔPDDmeas 1.19% 1.54% 0.73%

Note: Deviations are averaged for those calculated from depths of 1.5, 5, and
10 cm.

TABLE 3 Gamma analysis on predicted dose profile relative to TPS calculations (𝛾TPS) and measurements (𝛾meas) for various regular fields

2 × 2 cm2 4 × 4 cm2 6 × 6 cm2 8 × 8 cm2 10 × 10 cm2

X-direction 𝛾TPS 100% 100% 100% 100% 100%

𝛾meas 89.8% (93.8%) 96.4% (100%) 92.9% (96.4%) 89.3% (96.5%) 96.4% (96.4%)

Y-direction 𝛾TPS 100% 100% 100% 100% 100%

𝛾meas 100% (100%) 85.7% (96.3%) 85.7% (96.1%) 82.1% (94.9%) 81.6% (93.9%)

Note: Gamma indices are calculated with 1%/1 mm and 2%/1 mm (in bracket) criteria.
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F IGURE 9 Gamma analysis for failure deliveries. (a) Geometric description of the field with introduced MLC leaf displacement errors noted
by d, and (b) the resultant 2%/2 mm gamma distributions for d = 1, 2, 3, and 4 mm, respectively

delivery with d = 0.The gamma distributions (2%/2 mm)
are calculated in Figure 9b. It can be found that the
abnormal dose regions caused by erroneous leaf posi-
tionings are identified and highlighted with larger gamma
index (Υ > 1). The 2%/2 mm gamma pass rates are
95.6% (d = 1 mm), 93.6% (d = 2 mm), 89.8% (d =

3 mm), and 86.8% (d = 4 mm), yielding differences of
0.3%, 2.3%, 6.1%, and 9.1%, respectively, comparing to
the normal delivery result (95.9%). And the 3%/3 mm
gamma pass rates are 98.3% (d = 1 mm), 98.2% (d =

2 mm),97.1% (d = 3 mm),and 95.1% (d = 4 mm),yield-
ing differences of 0.1%, 0.2%, 1.3%, and 3.3%, respec-
tively.

4.2 Mirror-glare artifacts

In CRIS, mirror-glare effects were found to be a major
confounding artifact,5,7 as seen in the radiolumines-
cence images (Figures 6a and 7a). Mirror glare arti-
facts are caused by the interreflections between the
mirror and the phosphor screen, and are aggravated
with a reduced distance in between. In our study, glare
artifacts are observed on top of the raw image, where
the distance between the hemispherical mirror and the

scintillator sheet is smaller than other places. The arti-
facts can be reduced by changing the irradiation field far
away from the top sensitive regions of the mirror, which
explains the inverse relation between the ϒpass and the
field sizes.The artifacts are eliminated in the dose maps
predicted using fGAN. In fGAN, a domain translation is
enhanced via the cycle consistency supervision, which
enforces attention to both the high-frequency structures
and low-dose contents.Using cyc,a radioluminescence
image is reconstructed from the dose map by importing
a source domain label csrc. In this process, the genera-
tor learns the representations of the raw image contam-
inated with the glare artifacts, which in turn benefits the
artifacts removal. Apart from the glare artifacts, ϒpass at
the depth of 1.5 cm is always higher than that at 10 cm,
which might be explained by the fact that the trained
nonlinearities in the network fail to accurately approxi-
mate the stronger diffuse effect at a larger depth.

4.3 Advantages, limitations, and
ongoing works

Using the proposed method, promising passing rates
were achieved in measurements with regular open
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fields. Slight degradation was observed in the IMRT
cases,which could be explained by the limited dose pre-
diction accuracy for some highly irregular field shapes
and sizes. By examining the delivery, we noticed that
the segments with a leaf gap less than 0.2 cm gen-
erally led to limited dose accuracy. For example, the
prediction for the third field of the brain case has a
gamma passing rate of only 91.8% (2%/2 mm), in which
40% segments contain one or more leaf pairs with a
gap less than 0.2 mm. This could be attributed to the
fact that the model was not trained for such a small
field size.Additionally,current training datasets were col-
lected with the secondary collimator jaws retracted, and
thus the influence from the jaw position was not learned
by fGAN. As the jaws follow MLC in the IMRT treat-
ment, errors were found in the low-dose regions (see
Figure 7b,c). However, the errors were very limited (a
mean gamma index of ∼0.5 is found in Figure 7e) and
mostly appear in typical cutoff regions (those with dose
less than 10% threshold). This adversity may be more
pronounced for those scenarios with extremely low dose.
Additional training could be performed in the future, with
the effect of jaw setting taken into consideration.

As a proof-of -concept demonstration, the gantry
angle was fixed at 0◦ for all the experiments due to the
limited size (150 × 150 mm2) of the scintillator sheet.
However, the key techniques that were demonstrated for
both image restoration (as schematized in Figure 2) and
image–dose conversion at a fixed gantry angle remain
applicable for other angle scenarios benefiting from the
consistent beam’s eye-view design. As for applications
on verifying dynamic treatments such as VMAT,a salient
and unique feature that potentially challenges the cur-
rent image-to-dose conversion method is the integra-
tion effect over the dynamic fields in every single frame.
Given the consistency of good linearity of the Gd2O2S-
based scintillator material in dose response and struc-
tural invariability of the VMAT measurement in feature
space, the CNN-based dose engine that specifically
deals with abstractive features promises to be effective
with no need for retraining. The measurement might fail
at low-dose regions when the temporal resolution (5 fps
currently) is too low to support a reasonable signal-to-
noise ratio (SNR) or signal-to-background ratio (SBR).

In practice, several latent limitations are found: (i)
CMOS cameras will experience image degradation fol-
lowing exposure to radiation.While no such degradation
was noted in the cameras used throughout this study,
further work will be necessary to fully investigate the
usable lifetime of both the phantom and camera used
in the system. (ii) Dose accuracy might be degraded for
the treatment delivery with very large fields. As demon-
strated in Section 2.1, the image quality has a reduc-
tion against the distance to the mirror center due to the
hemispheric distortion. (iii) Prediction on absolute dose
distribution in a specific water phantom is based on the
assumption of a good consistency between the TPS set-

ting and actual beam energy. In reality, dose measure-
ment in most imaging-oriented QA devices (e.g., EPID
and ArcCHECK) is subject to this assumption. However,
the above weakness does not eliminate the value of
such devices as the whole treatment procedure involves
much more than LINAC beam performance. Other fac-
tors include dose calculation, imaging guidance, MLC
performance, etc. Any performance change in those
components will affect the QA agreement. Furthermore,
LINAC energy is usually very stable, and could be con-
sidered sufficiently checked if it is included in monthly
and daily QA.

The proposed dose engine has the potential for full-
depth prediction in a specific water phantom.To this end,
fGAN needs to be trained for sufficient number of depths
within the interrogated range to fulfill a 3D interpolation
that enables volume rendering of predicted dose maps.
Preliminary experiments show that a dense depth dis-
tribution of ∼1 mm space within 3 cm range is neces-
sary to follow the high-dose variations in the buildup
region, while a coarse distribution with ∼10 mm space
is reasonable outside this region. To allow for absolute
dosimetry, the linearity of the detector response relative
to dose rate is an important measure.We did not include
the linearity study about the Gd2O2S-based scintillator
material in this work,because it has been studied exten-
sively in another study we performed on real-time beam
visualization.16

5 CONCLUSION

In this work, a novel dosimetric verification system is
developed using a radioluminescence imaging system.
The system involves a cylindrical sensing receptor to
allow for a coplanar detection and maintains a rela-
tively high spatial resolution. Given the specific geomet-
ric design that complicates the dose response function,
a data-driven learning strategy is proposed to enable
reliable, practical, and robust dose measurement with-
out explicitly investigating the imaging physics. The pro-
posed deep learning model enables flexible domain
transformation from radioluminescence image to corre-
sponding dose maps at multiple depths,potentially offer-
ing a way for full 3D dosimetry. The proposed system
is validated by comparing to TPS results and measure-
ments in regular fields ranging from 2 × 2 to 10 × 10 cm2

and in three clinical IMRT cases. This study renders a
way for further advancing the volumetric dosimeters in
terms of spatial resolution and economic cost, promis-
ing to enhance the armamentarium of treatment plan
verification.
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