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Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of
the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound
image is a challenging task due to the inherent speckle artifacts, blurry breast lesion boundaries, and in-
homogeneous intensity distributions inside the breast lesion regions. Recently, convolutional neural net-
works (CNNs) have demonstrated remarkable results in medical image segmentation tasks. However, the
convolutional operations in a CNN often focus on local regions, which suffer from limited capabilities
in capturing long-range dependencies of the input ultrasound image, resulting in degraded breast lesion
segmentation accuracy. In this paper, we develop a deep convolutional neural network equipped with a
global guidance block (GGB) and breast lesion boundary detection (BD) modules for boosting the breast
ultrasound lesion segmentation. The GGB utilizes the multi-layer integrated feature map as a guidance
information to learn the long-range non-local dependencies from both spatial and channel domains. The
BD modules learn additional breast lesion boundary map to enhance the boundary quality of a segmen-
tation result refinement. Experimental results on a public dataset and a collected dataset show that our
network outperforms other medical image segmentation methods and the recent semantic segmentation
methods on breast ultrasound lesion segmentation. Moreover, we also show the application of our net-
work on the ultrasound prostate segmentation, in which our method better identifies prostate regions
than state-of-the-art networks.
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1. Introduction boundaries between the breast lesion and non-lesion regions, as
well as the irregular breast lesion shapes; see Fig. 1 for the exam-
Breast cancer is one of the dreadful diseases that affect ples.

women globally. According to the statistic information reported Segmenting breast lesion in ultrasound images has been widely

in American Cancer Society (2019), an estimated 42,260 breast can-
cer deaths would occur in 2019. An accurate breast lesion seg-
mentation from the ultrasound images helps the early diagnosis
of breast cancer. However, the automatic breast lesion segmenta-
tion in a 2D ultrasound image is a challenging task, since there are
the speckle noise, and strong shadows in the ultrasound, inhomo-
geneous distributions in the breast lesion regions, and ambiguous
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studied in the research community. Early attempts, e.g., (Shan
et al., 2012; Madabhushi and Metaxas, 2002; Shan et al., 2008;
Kwak et al., 2005; Madabhushi and Metaxas, 2003; Yezzi et al.,
1997; Chen et al., 2002; Xian et al., 2015; Ashton and Parker, 1995;
Boukerroui et al.,, 1998; Xiao et al., 2002) detected the breast le-
sion boundaries mainly based on the hand-crafted features. These
features, however, have the limited feature representation ability,
leading to misrecognize the breast lesions in a complex environ-
ment. Recently, the convolutional neural networks (CNNs) have
achieved impressive progress on breast ultrasound segmentation
task. For examples, Yap et al., adopted U-Net, FCN-AlexNet, and
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Fig. 1. Examples of challenging cases in breast ultrasound lesion segmentation. The
green contour denotes the breast lesion boundary. Left: the input ultrasound im-
ages. Right: the lesion region. (a) Inhomogeneous distributions inside the breast
lesion region. (b) Ambiguous boundary due to similar appearance between lesion
regions and non-lesion backgrounds. (c) Irregular breast lesion shapes. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

patch-based LeNet for 2D ultrasound image breast lesion detec-
tion (Yap et al., 2017). Lei et al., employed a deep neural net-
work with the supervision signals on the boundary to address
the whole breast ultrasound image (Lei et al., 2018). Xu et al,,
adopted an eight-layer CNN to segment 3D breast in the ultra-
sound data (Xu et al., 2019).

The ultrasound image has many distant pixels, which have the
similar appearance as the breast lesions. Incorporating these pixels
could provide long-term non-local features to learning discrimina-
tive features for the ultrasound breast lesion segmentation. Cap-
turing the global contextual information for ultrasound image seg-
mentation is a long-standing topic in the medical image commu-
nity. Previous studies proposed to enlarge the receptive field with
dilated convolutions, pooling operations (Chen et al., 2018; 2017b;
2014); or fuse the middle level and high level features with more
task-related semantic features (Ronneberger et al., 2015; Lin et al.,
2017). However, these methods fail to capture the contextual infor-
mation in a global view and only consider the inter-dependencies
among spatial domains. In medical image analysis community,
most previous approaches rely on local region operation for seg-
mentation task (Ronneberger et al., 2015; Dou et al., 2016; Lin
et al.,, 2017). However, capturing the long-range dependencies in-
formation holds promising potentials but has not been well ex-
plored yet. Traditional non-local blocks in these networks (Qi et al.,
2019; Dou et al, 2018) are only embedded into the deep CNN
layers to learn long-range dependencies for network predictions.
However, due to the relatively larger receptive fields than shallow
CNN layers, the deep layers of a segmentation network are respon-
sible for capturing cues of the whole breast lesions and somehow
lack parts of breast lesion regions, degrading the segmentation per-
formance.

In this work, we develop a convolutional neural network (CNN)
to integrate features at all CNN layers (including deep and shal-
low CNN layers) to produce multi-level integrated features (MLIF)
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as a guidance information of the non-local blocks in spatial and
channel manners to complement more breast lesion boundary de-
tails, which are usually neglected by deep CNN layers. Moreover,
we propose to predict additional breast lesion boundary map such
that the predicted boundary map is regularized to be as similar as
the underlying ground truth. By doing so, our network can produce
a segmentation result with more accurate breast lesion boundaries.
In summary, our contributions are four-fold:

First, we present a CNN (denoted as GG-Net) with a global
guidance block (GGB) to aggregate non-local features in both
spatial and channel domains under the guidance of multi-layer
integrated features for learning a powerful non-local contextual
information.

Second, we develop a breast lesion boundary detection (BD)
module in shallow CNN layers to embed additional boundary
maps of breast lesions for obtaining the segmentation result
with high-quality boundaries.

Third, the experimental results on two ultrasound breast lesion
datasets show that our network outperforms the state-of-the-
art medical image segmentation methods on breast lesion seg-
mentation.

Moreover, we also show the application of our network on the
ultrasound prostate segmentation, where our network obtains
satisfactory performance.

2. Related works

Breast lesion segmentation from ultrasound images is very chal-
lenging due to the speckle artifacts, low contrast, shadows, blurry
boundaries, and the variance in lesion shapes (Kirberger, 1995). A
variety of breast lesion segmentation algorithms have been pro-
posed and these methods can be broadly classified into four cat-
egories, including region based approach (Shan et al., 2012; Mad-
abhushi and Metaxas, 2002; Shan et al., 2008; Kwak et al., 2005),
deformable models (Madabhushi and Metaxas, 2003; Yezzi et al.,
1997; Chen et al., 2002), graph-based approaches (Xian et al., 2015;
Ashton and Parker, 1995; Boukerroui et al., 1998; Xiao et al., 2002)
and learning based approaches (Liu et al., 2010; Huang et al., 2008;
Lo et al, 2014; Moon et al., 2014; Othman and Tizhoosh, 2011).
These approaches usually employed texture features to represent
the local variation of pixel intensities and then detect abnormal
regions in the ultrasound image. However, these methods rely on
hand-crafted features and have limited representation capacity.

Convolutional neural networks (CNNs) have shown remark-
able performance in many medical image analysis tasks, includ-
ing image classification (Yu et al., 2018; 2017), semantic segmen-
tation (Ronneberger et al., 2015; Dou et al., 2016; Yu et al., 2016;
Li et al, 2018). These methods utilized the superior learning ca-
pability of neural network and outperformed other traditional seg-
mentation methods. For breast image analysis, recent works have
featured CNN based methods (Yap et al., 2017; Lei et al,, 2018; Xu
et al., 2019; Dhungel et al., 2017; Mordang et al., 2016a; Ahn et al.,
2017; Mordang et al., 2016b; Hu et al., 2019; Mishra et al., 2018).
Yap et al. adopted pacth-based LeNet, U-Net, and FCN-AlexNet
for breast lesion detection Yap et al. (2017). Leiet al. proposed
a ConvEDNet for whole breast ultrasound image segmentation
with the deep boundary supervision and adaptive domain trans-
fer knowledge (Lei et al., 2018). Some works adopted CNNs with
different layers to detect mass, estimate the breast density, and
segment breast ultrasound images (Dhungel et al., 2017; Ahn et al.,
2017; Xu et al., 2019). Mordang et al., adopted OxfordNet for mam-
mography microcalcification detection (Mordang et al., 2016b). Hu
et al., proposed a dilated fully convolutional network for breast
tumor segmentation (Hu et al., 2019). Mishra et al., developed a
fully convolutional neural network with deep supervision for lu-
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Fig. 2. The schematic illustration of the proposed breast lesion segmentation network (GG-Net) in this work. (i) We first use a convolutional neural network (CNN) to
produce a set of feature maps with different scales, followed by a ASPP module to enlarge the receptive field. (ii) In each CNN layer, we pass its feature map to a breast
lesion boundary detection (BD) module (see Section 3.2) to detect breast lesion boundaries. (iii) We concatenate features at all CNN layers and use it as the guidance to
the developed global guidance block (GGB), which includes a spatial-wise global guidance block and a channel-wise global guidance block, to learn long-range dependencies
for each pair of positions on the feature maps over spatial and channel domains. (iv) We use the output feature map of the GGB to predict the segmentation result of our

network.

men segmentation and liver lesion segmentation (Mishra et al.,
2018).

To improve the pixel-wise prediction accuracy, many re-
searchers considered incorporating the long-range dependencies
and contextual information in the network, thus enhancing the
feature representation for pixel-wise prediction. For example,
atrous spatial pyramid pooling (ASPP) was designed to embed
the global contextual information, and it was widely adopted in
DeepLabv2 (Chen et al,, 2014) and DeepLabv3 (Chen et al., 2018).
Similarly, Zhao et al., designed a pyramid pooling module to col-
lect the effective contextual prior with different scales (Zhao et al.,
2017). Besides, an EncNet was introduced a channel attention
mechanism to capture the global context (Zhang et al., 2018).
Peng et al, argued that large kernel plays an important role
in semantic segmentation tasks, and a global convolutional net-
work was proposed to learn the context information (Peng et al.,
2017). In medical image analysis field, there are some recently
work that also considered the context information, such as the
encoder-decoder structures (Ronneberger et al., 2015) fused the
mid-level and high-level features to obtain different scale context.
In OBELISK-Net (Heinrich et al., 2019), sparse deformable convo-
lutions were formulated to learn large context information. How-
ever, these methods mostly stacked a series of convolutional layers
to capture the context information. Several works have been pro-
posed to alleviate this issue by implicitly utilizing attention mech-
anisms or non-local operations to increase the receptive fields and
capture contextual information (Wang et al., 2018a; Vaswani et al.,
2017; Schlemper et al., 2019; Zhang et al., 2017; Roy et al., 2018;
Joutard et al., 2019). However, the meticulous features in the multi-
layer features and the long range dependencies between feature
channels are ignored. In this regard, we introduce a network that
gracefully unifies the approaches mentioned above, which not only
consider the long-range dependencies spatial-wisely and channel-
wisely, but also embed contextual information from different lay-
ers.

3. Methodology

Fig. 2 illustrates the architecture of the developed network (de-
noted as GG-Net). Our network takes a breast ultrasound image

as the input and produces a segmented mask in an end-to-end
manner. Specifically, our GG-Net starts by using a CNN to gener-
ate multi-level feature maps with different spatial resolutions and
adopting the ASPP (Chen et al., 2018) to enhance the receptive
field of features. In order to utilize the complementary informa-
tion among different CNN layers, the GGB is introduced to refine
the features by learning long-range feature dependencies under the
guidance of an integrated feature map from the shallow CNN lay-
ers. Moreover, the BD module is embedded in the shallow CNN
layers to capture the breast lesion contour and provide a strong
cue for better segmenting breast lesions and refining lesion bound-
aries. Finally, the prediction map is produced as the segmentation
result of our network. In the following subsections, we will intro-
duce details of the developed GGB and BD in our method.

3.1. Global guidance block

Convolutional and recurrent operations of CNNs only capture
the spatial dependencies within a local neighborhood. Although
stacking convolutional layers can learn the long range depen-
dencies, such repeating local convolutions is time-consuming and
leads to the optimization difficulties that need to be carefully ad-
dressed (Wang et al., 2018a). Moreover, breast ultrasound images
usually contain speckles and shadows that tend to be recognized
as breast lesion due to the limited receptive fields of local convo-
lutions. In this regard, we develop a global guidance block (GGB),
which leverages a guidance feature map to learn the long range
dependencies by considering spatial and channel information.

3.1.1. Spatial-wise global guidance block

The feature maps from the shallow CNN layers provide detailed
information but contain more non-lesion regions, while the deep
CNN layers with larger reception fields eliminate the non-lesion
regions, but tend to lose the local details. In this regard, we argue
that feature maps at different CNN layers contain the complemen-
tary information, as shown in Fig. 3. In our method, we first resize
the feature maps of the first four CNN layers to the size of feature
map from the second CNN layer, and then concatenate them to
one multi-layer integrated feature (MLIF) map. After that, a spatial-
wise global guidance block (spatial-wise GGB) is proposed to learn
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(a) inputs (b) 1st layer (c) 2nd layer (d) 3-th ayer (e) 4-th layer (f) ground truth

Fig. 3. Two examples are shown to illustrate the learned breast lesion feature on different layers. (a) Input images. (b)-(e) Segmentation maps predicted from the feature
map from the 1st layer to the 4th layer. (f) Ground truths. The shallow layers (b), (c) and (d) contains more detail features compared to (e).
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Fig. 5. The schematic illustration of the channel-wise GGB, where G is the guidance

Fig. 4. The schematic illustration of the details of spatial-wise GGB, where G is the map and Y is the input feature map.

guidance map, and X is the input feature map.

matrix (denoted as Sg) from the guidance map G:
the long-range position dependencies by taking MLIF as a guidance ix ( e) fr gul P

map. Sg = Softmax(G"W; ,,W,)G)) . (2)

Fig. 4 shows the schematic illustration of our spatial-wise GGB.
Specifically, let X (x € R"*Wx¢) denote the output feature map of
the ASPP module (see Fig. 2), and G (g € RP*Wx) denotes the guid-
ance map. The spatial-wise GGB first feeds X into three 1 x 1 con-
volution layers with different parameters, Wy ), Wy (x), and W, (),
to generate three feature maps, 0 (x), ¢ (x), and w(x), respectively.

Once obtaining two similarity matrices Sy and Sg, we use a soft-
max layer on the element-wise multiplication result of Sy and Sg
to generate a guided similarity matrix Sy;. Then, we multiply Sy
with the features w(x) to obtain a new feature map Y', which is
then added with the input features X to generate the output fea-

After that, we reshape 6 (x), ¢(x), and p(x) as R™xc matrices, ture map Y:

multiply the reshaped ¢(x) with the transpose of the reshaped Y = w(x) Softmax(Sx - Sg) + X . (3)

0(x), and apply a softmax layer on the multiplication result to

compute a hw x hw spatial-wisely position similarity map S: 3.1.2. Channel-wise global guidance block

S, = Softmax(XTWGT(X)WWX) X) (1) Ol_lr spatial-wise GGB treats each feature c_hanpel equally when
learning the long range dependencies, resulting in neglecting the

where softmax follows the traditional sigmoid function and it is  correlations among different feature channels. Recently, allowing

applied on each element of the hw x hw XTW]  WjX. On the  varied contributions from different feature channels has achieved

other side, two 1 x 1 convolution layers with parameters, W, ), superior performance in many computer vision tasks (Hou et al.,

and W, ), are applied on guidance map G to obtain two fea- 2019; Chen et al., 2017a; Hu et al., 2018). Motivated by these, we
ture maps, 7(x) and p(x), reshape n(x) and p(x), multiply the develop a channel-wise global guidance block (channel-wise GGB)
reshaped n(x) to the transpose of the reshaped p(x), and apply to further learn the long range inter-dependencies between differ-
a softmax layer for producing another hw x hw position similarity ent feature channels. Fig. 5 illustrates the schematic details of the

oS
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(b) (© (d) (e)

Fig. 6. An analysis of segmentation improvement based on detected boundaries.
(a) Input images. (b) Detected boundary map at BD module at the fourth CNN
layer. (c) Ground truths of breast lesion segmentation. (d) Segmentation results of
our method. (e) Our results without the BD module. Apparently, learning additional
boundary maps of breast lesion incurs a better segmentation result.

(@

proposed channel-wise GGB, which takes a feature map Y and a
guidance map G as two inputs and generates a refined feature map
Z. Specifically, we reshape Y to R&"™ multiply the reshaped Y and
the transpose of the reshaped Y, and use a softmax layer to ob-
tain a channel-wise similarity map S; € R°*¢. Regarding the input
guidance feature map G, we first use squeeze-and-excitation block
to emphasis informative feature channels of G and suppress less
useful ones. To achieve this, we use a global average pooling to
generate the channel-wise statistics 8, and the kth element of the
descriptor (B) is given by

h w
Be= 3D GG k) (4)

i=1 j=1

where G(i, j, k) denotes the element at the position (i, j, k) of guid-
ance map G. After that, we use two fully connected (fc) layers and
a sigmoid activation function on the channel-wise statistics S to
generate a coefficient vector V;:

Vi = d(WLQ2(W18)) (5)

where W; and W, denote the parameters of the two fully con-
nected layers, 2 and & are the ReLU and the sigmoid activation
function, respectively. Then, we multiply V; with G to assign dif-
ferent weights on channels of G and obtain a refined feature map
(denoted as G). Once obtaining G, we reshape it to R, multi-
ple the reshaped G and the transpose of the reshaped G, and use
a softmax layer to generate a ¢ x ¢ similarity map Se. Later, a soft-
max layer is applied on the multiplication of S; and S, to obtain a
guided similarity map Sg. Finally, we multiply So with the input Y
to produce a new feature map Z', which is then added to the input
features Y to obtain the output feature map Z of our channel-wise
GGB.

3.2. Breast lesion boundary detection module

Although GGB generates a breast lesion segmentation result, we
find that there are many failed segmented regions in the results,
as shown in Fig. 6(e), which have inaccurate boundary maps of the
breast lesion. To alleviate this, we develop a breast lesion bound-
ary detection (BD) module to identify multi-level boundary maps
of the breast lesions and enhance the segmentation result with an
additional boundary prediction loss. Fig. 7 shows the schematic il-
lustration of the developed BD module at the i-th CNN layer to de-
tect breast lesion boundaries. It takes the feature map of i-th CNN
layer as the input and outputs a boundary map of the breast lesion
and a breast lesion segmentation result. Specifically, we first use a
1 x 1 convolutional layer on the input features F (i) to obtain a new
feature map Fy (i) with one channel. Then, we shift Fy (i) with one
pixel via a maxpooling operation (stride = 1, padding = 1, kernel
size = 3 x 3; see (Feng et al., 2019) for details) and subtract the
shifted result from Fy (i) to obtain a boundary map E of the breast
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Fig. 7. The schematic illustration of the breast lesion boundary detection (BD) mod-
ule. F(i) is the feature map at the ith CNN layer.

lesions. After that, we add Fg (i) with E to obtain a breast lesion
segmentation map.

3.3. Loss function

As shown in Fig. 2, we add a BD module for the shallow CNN
layer to jointly locate breast lesions and detect a boundary map
from feature map at the CNN layer. Hence, our network generates
four boundary maps and four breast lesion segmentation results
at four CNN layers. Moreover, our network generates a final seg-
mentation result of breast lesions from the GGB. With an anno-
tated breast lesion mask, we apply a canny operator (Canny, 1986)
to obtain the boundary mask as the ground truth of the boundary
prediction. Finally, we compute the total loss of our network as:

Nluyer

Leotal = Z ()\l ) Llseg + )‘2 ) leoundary) + Lfseg (6)
i=1

where Nigr is the number of CNN layers, and we empirically set
Nigyer as four in our implementation. Liseg and L'ynqqry denote the
segmentation loss and the boundary loss in the BLBD module of
i-th CNN layer, respectively. Lf seg is the loss function of the final
segmentation result. The weights A; and A, are to balance Lig,
L'poundary. and Lfseg, and their values are empirically set as A; = 1
and A, = 10.

Let P! denote the predicted breast lesion segmentation result at
i-th CNN layer and G is the ground truth of the annotated breast
lesion mask. L"Sf_.g combines a dice coefficient loss and a binary
cross-entropy loss to compute the difference between P! and g:

: 250 (P x @) 1 &
Lieg=1- o= — - 2 (P)jlog@); (D)
) Y P2+ (62 N ]:Zl ! !

where Ny is the number of pixels in the Pl
L'poundary is computed as the mean square error (MSE) between

the predicted breast lesion boundary map (denoted as D!) and
ground truth of the boundary map (denoted as Bg):

Ny
Liboundary = Z{(Di)j - (Bc)j}2 (8)
j=1

where N, is the number of pixel in D'; (D'); is the jth pixel at D';
and (Bg); is the jth pixel at B.

Moreover, following Liseg, Lf seg also combines the dice coeffi-
cient loss and binary cross-entropy loss to compute the difference
between the predicted segmentation map (denoted as F) and G
(see Eq. (7)):

Np . ; No
250 (F)j < (9); 3 (F),log(6); 9)

Vg =1- 2 N 2_Nl
Zji](]:)j +Z]i](g)] p j=1

seg =
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3.4. Implementation

3.4.1. Training parameters

To accelerate the training process, we initialize the parameters
of the feature extract network using the pre-trained ResNext on
ImageNet while other parameters are initialized by random noise.
The SGD algorithm is used to optimize the whole network with a
momentum of 0.9, a weight decay of 0.0001, a mini-batch size of
4, and 100 epochs. We set the initial learning rate as 0.001 and
reduce it by multiplying 0.1 after finishing every 50 epochs. Ran-
dom rotation and horizontal flip operations are adopted for per-
forming the data augmentation on the training set. We implement
the whole network using PyTorch library and train our network on
a single NVIDIA TITIAN Xp GPU.

3.4.2. Inference

In the testing stage, we take the segmentation result predicted
from the refined features of the dual guided non-local block as the
output of our segmentation network, and then pass the result to
the conditional random fields (CRF) (Krdhenbiihl and Koltun, 2011)
for obtaining the final segmentation result. The network has 55 M
trainable parameters. The inference time was 0.039 s per image.

4. Experiments

We first introduce two datasets on breast ultrasound lesion seg-
mentation and evaluation metrics, then conduct ablation studies to
verify the major components of our network, as well as quantita-
tively and qualitatively compare our method against the state-of-
the-art segmentation methods.

4.1. Datasets

We evaluate our segmentation network on two datasets includ-
ing a public benchmark dataset (i.e., BUSI in Al-Dhabyani et al.,
2020) and our collected dataset. BUSI collected 780 images from
600 female patients, with 437 benign cases, 210 benign masses,
and 133 normal cases. Note that the main purpose of breast le-
sion segmentation in the clinical usage is for the lesion assess-
ment, tracking the lesion change, and identifying distribution and
seriousness of lesions. As a result, clinicians usually screen the in-
put ultrasound sample firstly to identify the lesion, and then con-
duct the breast lesion segmentation for clinical measurement. As a
result, we remove the normal cases without breast lesion masks
to form the benchmark dataset, and adopt the three-fold cross-
validation to test each segmentation method.

Our collected dataset has 632 clinical breast ultrasound images
in total from 200 patients. The images are captured by different
ultrasound imaging systems from Shenzhen Peoples Hospital and
the Second Affiliated Hospital of Jinan University. We follow the
widely-used annotation procedure of the medical image segmen-
tation for annotating breast lesions. Firstly, three experienced ra-
diologists are invited to annotate the breast lesion regions of each
ultrasound image using a software interface developed via Matlab.
Each radiologist used about two weeks to delineate all the breast
lesion regions, and the segmentation ground truths of each image
were then obtained based on inner- and intra-observer agreement
of the three radiologists. Then, the final ground-truths were fur-
ther refined by a senior radiologist with more than 10-year expe-
rience for quality control. To make the comparisons fair, we adopt
the seven-fold cross-validation to test each segmentation method
on this dataset.

4.2. Evaluation metrics

We adopt seven commonly used metrics to quantitatively com-
pare different methods on the breast lesion segmentation. They are
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Dice coefficient (denoted as Dice), Jaccard index, Recall, Precision,
Accuracy, Hausdorff distance (denoted as HD) and average bound-
ary distance (denoted as ABD).

4.3. Ablation analysis of our GG-Net

In this section, we show the effectiveness of the principal com-
ponents of our network, i.e., sptial-wise GGB, channel-wise GGB,
and BD module in our network. And the ablation study experi-
ments are mainly conducted on our collected dataset. The baseline
(i.e., first row of Table 1) is constructed by removing both GGB and
the BD module from our network. It is the original DeeplabV3+
network with ResNeXt as the backbone.

Table 1 shows the comparison results of our method with dif-
ferent components. By comparing ‘SNLB’, ‘CNLB’ and baseline (first
row of Table 1), we can see that learning the long-range dependen-
cies has a superior performance in segmenting the breast lesion
regions from the ultrasound images. Then, ‘SNLB + Guidance ' (i.e.,
spatial-wise GGB) and ‘CNLB + Guidance’ (i.e., channel-wise GGB)
have better results than ‘SNLB’ and ‘CNLB’, showing that adding
our MLIF guidance information into the spatial non-local and the
channel non-local can help to capture the long-range position de-
pendencies for the breast lesion segmentation. Moreover, the com-
bination of the spatial-wise GGB and the channel-wise GGB has
superior segmentation results over only using spatial-wise GGB or
channel-wise GGB, demonstrating that combining the spatial and
channel information into learning guided non-local features can
enhance the breast lesion segmentation performance. Finally, our
method with full components has the best segmentation accuracy,
which means that the detected breast lesion boundaries in the BD
module of our network also contribute to the superior breast le-
sion segmentation performance.

Fig. 8 visually compares the segmentation results produced by
the baseline, “basic + GGB” and our method. From the visual re-
sults, we can easily find that “basic + GGB” has a higher segmen-
tation accuracy than “basic”, showing that the developed GGB can
learn the long-range position dependencies to boost the breast le-
sion segmentation performance. Moreover, as shown in Fig. 8(e)
and (d), our method (i.e., “basic + GGB + BD”) can more accurately
detect breast lesion regions than “basic+GGB”. It means that adding
the BD module into our method can further improve the segmen-
tation accuracy by generating refined boundaries.

BD on the network output branch Our network applies the BD
module on different CNN layers; see Fig. 2. Here, we modify our
network by applying the BD module on the output branch for
detecting breast lesions and the modified network is denoted as
“Ours-BD”. Table 2 lists different metric values of our method and
“Ours-BD”, showing that our method has only slightly better met-
ric results than “Ours-BD”. It means that adding the BD module on
the network output branch reaches a similar segmentation accu-
racy as our network.

Alternative deep supervision in BD modules Note that the BD
module of our network imposes the deep supervision on two pre-
dictions, i.e., the breast lesion segmentation and the breast lesion
boundary detection. To really verify the contribution of the BD
module, we conduct an experiment by constructing a network (de-
noted as ‘Ours-ADS’) by using alternative deep supervision meth-
ods in the BD module, which means that we only impose the deep
supervisions on the breast lesion segmentation and remove the su-
pervisions on breast lesion boundary predictions in each BD mod-
ule. Table 3 summarizes the quantitative results of our method and
‘Ours-ADS’ on our collected dataset. From the results, we can easily
conclude that our method has achieved superior quantitative re-
sults than ‘Ours-ADS’ on all the seven evaluation metrics, demon-
strating that utilizing an alternative deep supervision method (i.e.,
removing breast lesion boundary detection supervision) in the BD
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input images ground truths

basic

basic+GGB

our method

Fig. 8. Visual results of ablation study. (a) Input images; (b) Ground truths; (c)-(e) are the segmentation produced by basic, “basic + GGB”, and our method (i.e., “basic +

GGB + BD”) respectively.

Table 1

Quantitative results on our collected dataset and the number of parameters for all networks constructed in ablation study
on our collected dataset.. The first row is Deeplabv3+ with ResNeXt as the feature extraction backbone. “Guidance” denotes
guidance information. “SNLB” denotes the traditional spatial-wisely non-local block while “SNLB+Guidance” is our spatial-wise
GGB (see Fig. 4). “CNLB” is the traditional channel-wisely non-local block while “CNLB + Guidance” is our channel-wise GGB

(see Fig. 5).
SNLB  CNLB  Guidance BD  Parameters Jaccard % Dice % Accuracy %  Recall % Precision %
534 M 734 +25 815+26 97.0+03 789 £24 887 +£3.0
v 535 M 776 £13 845+12 972 +03 83.1+16 90.7 +£1.7
v 535 M 775 +16 843 +13 972 +04 835+ 17 908 £ 1.6
v v 539 M 781 +14 850+13 973 +04 841402 91.0+15
v v 539 M 782 +14 852+12 973 +04 845+ 12 909+15
v v 552 M 784+ 16 854+14 972 +04 849+ 18 909+ 1.7
v v v 554 M 788 £+1.7 867+12 973 +03 86.1+ 17 91.2+1.2
v v v v 554 M 79.1 +1.6 87.1 +1.4 974 +0.3 86.6 +1.7 91.3 £1.0
Table 2
Quantitative results on our method and that with the BD module on the network output
branch on our collected dataset.
Dice % Jaccard % Accuracy %  Recall % Precision %
Our method 87.1 +1.4 791 +1.6 974 +0.3 86.6 +1.7 91.3 +1.0
Ours-BD 870+ 13 791 +1.5 973 +04 864+ 1.0 91.0+15
Table 3
Quantitative comparisons of our network with and without an alternative deep supervision in BDBL.
Jaccard % Dice % Accuracy %  Recall % Precision %  HD ABD
Ours-ADS 785+17 866+15 973+03 863 +12 861+15 164 £+ 23 55408
GG-Net (our method)  79.1 +£1.6 87.1 +1.2 974 +0.3 86.6 +1.7 91.3 +1.0 16.2 +2.4 5.3 +£0.7

module reduces the breast lesion segmentation accuracy of our
network.

4.4. Comparison with the state-of-the-arts

Compared methods We compare our network against several
deep-learning-based segmentation methods, including context-
based methods: feature pyramid network (FPN) Lin et al. (2017),
U-Net Ronneberger et al. (2015), U-Net++ Zhou et al. (2018),
pre-trained TernausNet Iglovikov and Shvets (2018), SK-U-
Net Byra et al. (2020), DeeplabV3+ Chen et al. (2018); as well
as attention-based methods: AG-Unet Schlemper et al. (2019), and
DAF Wang et al. (2018b). To provide fair comparisons, we obtain
the segmentation results of compared methods by download-

ing their public implementations and re-training their networks
on our dataset. Similarly, we also use the CRF Krdhenbiihl and
Koltun (2011) to post-process the predicted segmentation maps of
compared methods.

Quantitative comparisons Table 4 reports the mean and stan-
dard deviation values of the seven metrics among our method and
all the competitors on our collected dataset, while Table 5 sum-
marizes the mean and standard deviation scores of seven metrics
on BUSI. Compared to other segmentation methods, our method
has larger Jaccard, Dice, Accuracy, recall, and prediction scores, as
well as smaller HD and ABD values. It indicates that our GG-Net
can more accurately identify breast lesions from ultrasound images
than all the competitors.
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Table 4
Comparing our method (GG-Net) with the state-of-the-art methods for beast lesion segmentation on our collected dataset.
Jaccard % Dice % Accuracy %  Recall % Precision %  HD ABD

U-Net Ronneberger et al. (2015) 693 +24 780+24 965+03 769 £ 03 856 +24 251+24 81+09
U-Net+ Zhou et al. (2018) 733 +£21 821+22 966+04 81.1+17 879+26 256 +40 84+12
TernausNet Iglovikov and Shvets (2018) 73.7 £ 1.5 822 + 1.5 96.8 +£ 0.3 82.1+1.2 86.9 + 0.2 216 £ 2.6 75+095
FPN Lin et al. (2017) 772 +19 854+17 971+04 856+18 891+24 181 +27 61+1.0
DeepLabv3+ Chen et al. (2018) 734 +25 815+26 97.0+03 789 +24 887 +3.0 223+41 79+13
AG-Unet Schlemper et al. (2019) 741 +£19 828+19 966+04 825+23 873+19 241+£3.0 78+10
DAF Wang et al. (2018b) 754+19 836+21 971+04 845+23 866+24 171 +£23 5809
GG-Net (our method) 79.1 +1.6 87.1 +1.2 97.4 +0.3 86.6 +1.7 91.3 +1.0 16.2 +2.4 5.3 +0.7

Table 5

Comparing our method (GG-Net) with the state-of-the-art methods for beast lesion segmentation on the BUSI dataset. Best results are

marked with bold texts.

Jaccard % Dice % Accuracy %  Recall % Precision %  HD ABD

U-Net Ronneberger et al. (2015) 64.1 £ 1.8 733+ 1.7 959 £ 0.6 704 +£19 833 +13 652 +47 244+23
U-Net+ Zhou et al. (2018) 562+ 17 660+14 954+04 628 £1.5 782 +1.2 78.6+ 6.1 31.8 £ 4.0
FPN Lin et al. (2017) 722 +16 804+16 959+06 793 +13 851+15 47.6+ 5.8 189 + 2.6
DeepLabv3+ Chen et al. (2018) 682 +18 77.2+16 963 +0.6 744 +£25 848 +18 5444+ 5.9 224 +29
SK-U-Net Byra et al. (2020) - 70.9 95.6 - - - -

DAF Wang et al. (2018b) 68.4 + 3.1 77.1 £ 3.1 96.4 + 0.6 76.7 + 3.8 82.2 + 3.1 46.9+ 8.1 179 + 4.7
GG-Net (our method) 73.8 +1.1 82.1 +1.1 96.9 +0.5 81.2 +1.6 86.5 +0.5 43.9+4.8 16.4 +2.2

Table 6

Comparing our method (GG-Net) with the state-of-the-art methods for beast lesion segmentation on the BUSI dataset. (include normal data).

Best results are marked with bold texts.

Jaccard % Dice % Accuracy %  Recall % Precision %  HD ABD
U-Net Ronneberger et al. (2015) 512+ 19 588 +£15 96.3 +£0.7 56.1 £23 68.1+ 1.7 67.1 £ 6.1 247 £ 3.1
U-Net+ Zhou et al. (2018) 445+ 35 521 +£37 959402 488 £+ 47 63.6 £24 73.5 £ 5.0 27.8 £ 2.0
FPN Lin et al. (2017) 55.4 4+ 2.1 63.0+23 962+ 04 62.1 £34 683 +19 56.8 + 8.9 212 +£ 4.6
DeepLabv3+ Chen et al. (2018) 543 £+ 2.1 62.1 £25 964 +£05 592 +24 636+25 55.5+10.7 213455
DAF Wang et al. (2018b) 558+ 15 628+18 96.6+0.6 62.8 £+23 665+ 1.1 52.8 + 4.2 203 £ 2.3
GG-Net (our method) 56.6 +1.9 64.1 £2.1 96.6 +0.3 63.3 £3.6 69.7 +0.4 48.6 +7.2 18.8 +3.3

On the other hand, when further looking into the metric re-
sults in Tables 4 and 5, we can find that the segmentation per-
formance on our collected dataset (see Table 4) is better than the
results on the public BUSI dataset (see Table 5) with respect to all
seven evaluation metrics. The reason behind is that the ultrasound
image quality in our dataset is better than that in BUSI, thereby
making the better segmentation performance.

Utilizing BUSI’s normal cases The general purpose of breast le-
sion segmentation in the clinical usage is mainly for the lesion
assessment, tracking the lesion change, and identifying distribu-
tion and seriousness of lesions. As a result, people usually assume
that the input ultrasound samples possess one or more lesions,
and then conduct the breast lesion segmentation for clinical anal-
ysis. Here, we conduct another experiment by including the nor-
mal cases of BUSI into the training data and re-training all the
compared methods and our network to obtain their new results.
Tables 5 and 6 report the results of each method with and with-
out the BUSI's normal cases. According to the results, we can eas-
ily find that the quantitative results of all the competitors and our
network tend to be worse when considering normal cases in the
network training. Among all the segmentation methods, our net-
work still achieves the best performance of all seven metrics even
though the normal cases are added into the training set and the
testing set.

Visual comparisons We also visually compare the breast le-
sion segmentation results produced by our network and com-
pared methods; see Fig. 9 for examples. U-Net, U-Net++, FPN, and
DeeplabV3+ tend to neglect breast lesion details or wrongly clas-
sify non-lesion regions as breast lesions into their predicted seg-
mentation maps, while our method produces more accurate seg-
mentation results on breast lesion regions. Furthermore, our results

are most consistent with ground truths (see Fig. 9(b)) among all
segmentation results. This proves the effectiveness of long-range
dependencies and breast lesion boundaries in our method.

5. Application

Note that our network can be retrained for other ultrasound
image segmentation tasks. Hence, we further evaluate the effec-
tiveness of our network by testing it on the ultrasound prostate
segmentation task. To conduct fair comparisons, we follow the
same experimental setting of a recent prostate segmentation work,
i.e, DAF Wang et al. (2018b), to obtain the prostate segmenta-
tion results of our network. We use the DAF's training set to
train our network, test our method on the DAF’s testing set, and
report the results of same four metric (i.e., Jaccard, Dice, Recall
and Precision; see Wang et al. (2018b) for their definitions) for
comparisons. Table 7 summarizes the comparison results on four
metrics between our method and state-of-the-art networks, in-
cluding U-Net Ronneberger et al. (2015), FCN Lin et al. (2017),
BCRNN Yang et al. (2017), and DAF Wang et al. (2018b);
see Wang et al. (2018b) for details of these compared methods.
Apparently, our method outperforms all the competitors on almost
all the four metrics, demonstrating that our method can also iden-
tify prostate regions better from ultrasound images. It further ver-
ifies the effectiveness of the developed segmentation network in
our work.

6. Discussions

Breast cancer is the most frequently diagnosed cancer and the
leading cause of cancer-related death among women worldwide.
The automatic breast lesion segmentation from ultrasound images
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Fig. 9. Visual comparison of the breast lesion segmentation maps produced by different methods. (a) input breast ultrasound images; (b) ground truths; (c)-(g) are segmen-

tation results produced by our method, DeeplabV3+ Chen et al. (2018), U-Net Ronneberger et al. (2015), U-Net++ Zhou et al. (2018), and FPN Lin et al. (2017).

Table 7

Metric results of different methods on ultrasound prostate segmentation.

Jaccard %

FCN Lin et al. (2017) 85.1
BCRNN Yang et al. (2017) 86.0
U-Net Ronneberger et al. (2015) 87.1
DAF Wang et al. (2018b) 91.0
GG-Net (ours) 91.2

Dice %  Recall %  Precision %
91.9 90.8 93.3
92.4 90.5 94.5
93.0 96.8 89.9
95.3 97.0 93.7
954 95.7 95.1

assists the doctors in finding early signals of breast cancer, which
is of great importance in clinical practice. Traditional CNN-based
methods (Chen et al., 2018; 2017b; 2014; Ronneberger et al., 2015;
Lin et al., 2017) conducted convolutional operations in local regions
to learn deep discriminative features for medical image analysis
and thus suffered from unsatisfactory segmentation accuracy due
to the limited receptive fields of their local convolutions.

Recently, capturing non-local long-range pixel dependencies has
achieved superior prediction performance in many medical imag-
ing community (Qi et al., 2019; Dou et al., 2018) by devising non-
local blocks. However, these non-local blocks are only embedded
into the deep CNN layers for network predictions. However, the
deep layers of a segmentation network are responsible for captur-
ing cues of the whole breast lesions and somehow lack parts of
breast lesion regions due to the relatively larger receptive fields
than shallow CNN layers. In this regard, we integrate all CNN lay-
ers to produce multi-level integrated features (MLIF) as a guidance

information of the non-local blocks to complement more breast le-
sion boundary details (neglected by deep CNN layers).

This project presented a global guidance network (denoted
as “GG-Net”) with a spatial guidance block and a channel guid-
ance block to leverage guidance information for improving long-
range dependency feature learning in spatial and channel manners.
Moreover, a breast lesion boundary detection module is devised to
learn boundary details for futher refining the breast lesion seg-
mentation performance. Compared with state-of-the-art methods,
our network achieves a significant (p-value <0.05, see Table 8) im-
provement on two datasets, which proves the effectiveness of the
developed spatial and channel guidance block as well as boundary
detection block. Moreover, compared with other segmentation net-
works, our method has better performance on relatively less obvi-
ous lesion segmentation. This is crucial in the clinical practice, es-
pecially for breast ultrasound, where most of the lesions have low
contrast, shadows, and blurry boundaries.
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P-values between our method and other compared methods on different evaluation metrics.

Metrics U-Net vs. Ours ~ U-Net+ vs. Ours ~ TernausNet vs. Ours ~ FPN vs. Ours ~ AG-Net vs. Ours  DAF vs. Ours DeepLabv3+ vs. Ours
Jaccard 1.62 x 1077 1.64 x 10-° 9.41 x 10-° 4.60 x 1072 3.45 x 10~ 4.20 x 1073 3.00 x 1076
Dice 3.94 x 108 2.81 x 107> 5.17 x 1073 4.00 x 102 419 x 104 1.10 x 103 7.86 x 106
Accuracy  1.74 x 1073 3.28 x 1073 3.48 x 1072 3.70 x 1072 133 x 103 4.80 x 102 3.57 x 1072
Recall 9.80 x 10°1 2.31 x 10~ 3.02 x 1073 3.50 x 102 4.55 x 1073 1.20 x 103 3.97 x 10~
Precision  6.70 x 10~3 2.36 x 1073 3.24 x 104 6.60 x 1073 2.06 x 1073 8.90 x 1073 2.70 x 1073
HD 1.64 x 10-° 6.10 x 106 7.35 x 1074 400 x 104 2.89 x 10-° 840 x 103 4.00 x 10~*
ABD 1.01 x 1076 1.73 x 1077 8.07 x 107> 2.00 x 1073 6.03 x 107> 5.50 x 1073 7.40 x 1073

(a) Input ultrasound images

(b) Ground truths

(c) Our results

Fig. 10. Failure cases. (a) Input ultrasound images. (b) Ground truths of the breast lesion segmentation. (c) Segmentation results produced by our network.

Note that the elastography image encodes the density of the tis-
sue in the screen. In our future work, we will leverage elastogra-
phy images for further boosting breast lesion segmentation results
in ultrasound.

Failure cases Like other breast lesion segmentation methods, our
network tends to fail in fully detecting breast lesion regions when
the target breast lesion has a very large size and a complicated
intensity distribution inside it, or unclear boundaries. Fig. 10 shows
two examples, where our results in (c) wrongly identify non-lesion
regions as lesion ones, or neglect a part of breast lesion regions of
the input ultrasound image when comparing to the ground truths
(see (b)).

Statistical test To investigate the statistical significance of the
proposed network over compared methods on different quantita-
tive metrics, we conduct a statistical analysis of p-values and show
the p-values of our network against compared methods in terms of
different metrics in Table 8. As shown in Table 8, we can find that
the p-values of all the seven paired methods are almost smaller
than 0.05 for all the seven metrics, demonstrating that our method
can be regarded as reaching a significant improvement over the
other six compared methods on these evaluation metrics. Note
that the Accuracy p-values of our method over TernausNet, FPN,
DAF, and DeepLabv3+ are 3.48 x 1072, 3.70 x 1072, 4.80 x 1072,
and 3.57 x 1072, which are closer to 0.05. It indicates that our

10

method has a similar Accuracy performance to TernausNet, FPN,
DAF, and DeepLabv3+. Generally, the superior metric performance
of our method in Tables 4-6 shows that our network can better
segment breast lesions from ultrasound than other compared seg-
mentation methods.

7. Conclusion

This paper presents a global guidance network (GG-Net)
equipped with a global guidance block and a breast lesion bound-
ary detection module for breast lesion segmentation in ultrasound
images. The global guidance block aims to combine the multi-layer
context information as guidance information to learn the long-
term non-local features in spatial and channel manners. The breast
lesion boundary detection predicts additional breast lesion bound-
ary map to assist in improving the segmentation performance. We
evaluate our network on a public dataset and our collected dataset
of breast lesion segmentation in ultrasound images by comparing
it against state-of-the-art methods, and the experimental results
show that our network can more accurately segment the breast
lesions than all the competitors. We also show the application of
our network on the ultrasound prostate segmentation task and our
network also has a higher segmentation accuracy than state-of-
the-art methods.
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