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Deep Neural Network With Consistency
Regularization of Multi-Output Channels for
Improved Tumor Detection and Delineation
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Liyue Shen , and Lei Xing

Abstract— Deep learning is becoming an indispensable
tool for imaging applications, such as image segmentation,
classification, and detection. In this work, we reformulate
a standard deep learning problem into a new neural net-
work architecture with multi-output channels, which reflects
different facets of the objective, and apply the deep neural
network to improve the performance of image segmentation.
By adding one or more interrelated auxiliary-output chan-
nels, we impose an effective consistency regularization for
the main task of pixelated classification (i.e., image segmen-
tation). Specifically, multi-output-channel consistency reg-
ularization is realized by residual learning via additive paths
that connect main-output channel and auxiliary-output
channels in the network. The method is evaluated on the
detection and delineation of lung and liver tumors with pub-
lic data. The results clearly show that multi-output-channel
consistency implemented by residual learning improves the
standard deep neural network. The proposed framework
is quite broad and should find widespread applications in
various deep learning problems.

Index Terms— Artificial intelligence, cancer detection,
neural networks, regularization, residual learning,
segmentation.

I. INTRODUCTION

DELINEATION via pixel-level understanding (e.g.,
semantic segmentation) is one of the basic tasks among
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many applications of computer vision [1], [2] and bio-
medicine [3]–[9]. However, manual delineation of objects
is labor-intensive, time-consuming, and suffers from inter-
/intra-operator variations that often appear in radiomic fea-
tures [10]–[12]. Especially, medical image analysis requires
more expert-level delineation and higher coherence among
the results. Therefore, significant efforts have been devoted
to automate segmentation algorithms to cope with limitations
of manual delineations.

Algorithms based on Deep learning (DL) have attracted
much more attention in image segmentation, due to their
intrinsic ability to learn complex relationships to incorporate
prior information into network models in a data-driven man-
ner [9], [13]. For example, Li et al. [14] devised a hybrid
network that takes advantage of both 2D and 3D networks for
liver and liver tumor segmentation in CT images. Multiple
cascaded networks have been introduced for better perfor-
mance [15]. Seo et al. [8] designed a network for liver tumor
segmentation that can efficiently use object-edge information
to cope with the boundary loss in the pooling operation.
A modulation scheme of the loss function has been studied to
handle class imbalance problems [16]. The increasing number
of challenges (e.g., BraTS [17], LiTS [18], KiTS [19]) show
widespread use of DL algorithms in semantic segmentation
of medical images. While promising, the performance of
DL-based methods is often hindered by insufficient training
data or imperfect network architecture design. This situation is
aggravated for medical image analysis, as the training dataset
is much more limited than that for natural image applications.

In general, a neural network learns from a large set of
training data under the guidance of a loss function, which
drives the search for optimal network parameters by quan-
tifying the difference between the model prediction and the
ground truth. Nevertheless, minimizing a pre-defined loss
function alone for a given set of training data does not always
yield the optimal prediction. One of the major problems that
affect the learning procedure is overfitting [20]. It has long
been known as a bottleneck that degrades the performance
of resultant inference model in the testing data and hinders
the maximal utilization of the DL technique. Many techniques
have emerged to reduce overfitting [21], such as dropout [22]
and batch normalization [23]. However, further increasing the
network training efficiency under limited training data remains
an open problem.
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In this paper, we design an effective network architecture
to improve the network performance under limited training
dataset for medical image analysis. To this end, we present an
effective regularization scheme based on multi-output-channel
consistency. The key idea here is to address the segmentation
problem by a neural network architecture with multiple output
channels, reflecting different facets of the original learning
task. Specifically, we formulate the original segmentation
task as the main-output channel and additionally incorporate
other closely related tasks as auxiliary-output channels while
maintaining the consistency between the channels. Algorith-
mically, it is realized by sharing the encoders and adding
additive paths connecting the main-output and auxiliary-output
channels in the network. By sharing the representation between
the main-output channel and related auxiliary-output channels,
we enable the network to learn more discriminative and
generalizable features and thus achieve better performance on
the original segmentation task. Notably, the proposed scheme
requires no additional datasets for model training, since the
labels for auxiliary outputs are derived from the input images
with original labels. Recently, Zamir et al. [24] have presented
the study of cross-task consistency at CVPR 2020, but a
major difference with the proposed method is that their model
concentrates on consistency constraint between the output
tasks for different objectives. On the other hand, we use
relevant tasks under the same objective and adopt a residual-
learning-based strategy to achieve such consistency regular-
ization. The performance of our method is demonstrated on
the lung and liver tumor delineation problems. The exper-
imental results clearly show that our network outperforms
the state-of-the-art DL networks by a considerable margin,
i.e., an average 10% Dice improvement in segmentation
tasks.

The main contributions of this paper are summarized as
follows.

• We establish an efficient DL framework for medical
image segmentation tasks. Our framework improves the
network performance under limited medical training data
scenarios.

• We formulate the original segmentation task as by intro-
ducing a deep neural network with consistency regular-
ization of multi-output channels (i.e., the main-output
channel and additionally leverage auxiliary-output chan-
nels) for more discriminative and generalizable feature
extraction. We further design additive paths connect-
ing the main-output channel and auxiliary-output chan-
nels to adopt residual learning for multi-output channel
consistency.

• Extensive experiments on two representative and chal-
lenging tumor-delineation tasks demonstrate the effective-
ness of our method and outperforms the state-of-the-art
methods by a large margin.

The remainders of this paper are organized as follows.
We discuss the related works in Section II and elaborate the
proposed framework in Section III. We present the experimen-
tal conditions and results in Section IV, and further discuss
the key points of our method in Section V. Then, we draw the
conclusions in Section VI.

II. RELATED WORK

A. Medical Image Segmentation

Previous research on tumor segmentation was primarily
focused on image-based modeling, which includes intensity-
based thresholding [25], atlas-based models [26], deformable
models [27], [28], or super-pixel method [29]. Although
these approaches can produce good results, their performance
depends heavily on the design or manual selections of heuris-
tic model component(s), such as the choice of hand-crafted
features (e.g, the lesion diameter and volume annotated by a
radiologist) and the more robust radiomics features extracted
via feature engineering [30], [31]. To incorporate statistical
distribution of the patient data to improve the image seg-
mentation problem, graph model-based methods [32], [33]
were applied. Recent advances in DL tapped more potential
in machine learning [34]–[37]. DL algorithms have been
applied to various semantic segmentation problems, such as
liver segmentation [38], [39], organ-at-risk segmentation in
head and neck [40], [41], prostate segmentation [42], and
brain structure and tumor segmentation [43], [44]. Most of
the recent DL-based segmentation algorithms are based on
U-Net architecture [45] with skip connections, e.g., dense
structure [46]. It is worthwhile to note that generative adversar-
ial network (GAN) that adversarially train two networks [47]
has also been applied to image segmentation.

B. Network Regularization

DL usually provides better solution than classical algo-
rithms for semantic segmentation. Nonetheless, it has room for
improvement and there is a need to explore feature space more
efficiently, especially when the network contains too many
parameters to be optimized or when it is trained with insuf-
ficient training data. Several advanced network regularization
techniques have been developed for improved learning, such
as dropout [22] and batch or group normalization [23], [48].
Regularization on the loss function during the optimization
process has also been sought after [49], [50]. Recently, shake-
out [51] extended the dropout regularization and achieved
a slight gain via a careful hyper-parameter selection. Regu-
larization by latent space e.g., the least absolute shrinkage
and selection operator (LASSO)-based algorithms has also
been investigated [52], [53]. Finally, prior information can
also be utilize to regularize the deep neural network [54].
These regularization mechanisms steadily improve the network
performance on various image recognition tasks.

III. METHOD

A. Overview

To conduct tumor detection and delineation, in general, the
network can directly predict the tumor binary masks from
the input image. However, only predicting the binary mask
of tumors may not always produce the optimal results, as the
network could be biased to that task. The semantic segmenta-
tion typically requires visual expression to show the results of
pixelated classification. Finding the binary mask is one way
to proceed. In reality, other representations of the pixelated
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classification may exist. Including these representations by
introducing auxiliary tasks related to the original one would
provide guidance in learning and ease the model training
(i.e., regularization). Here, we propose to take advantage
of different facets of the original tumor delineation task
with multiple output channels via residual learning scheme.
Figure 1 is an overview of our proposed consistency regular-
ization network. Besides predicting the tumor binary masks
in the main-output channel, the network also incorporates
several auxiliary-output channels for relative prediction tasks.
These auxiliary-output channels restore the information of
input images in different ways (e.g., the original input image or
clustered input images) as well as output the tumor delineation.
Both the main and auxiliary-output channels are incorporated
in the end-to-end learning so that each output channel is able
to utilize the multiple-output-channel consistency to facilitate
their predictions.

In the following subsections, we elaborate (1) how to
incorporate the multi-output-channel consistency into network
training, and (2) how to efficiently combine the informa-
tion acquired from multiple output channels in the feature
space. In our network, the encoding parts of each output
channel are shared [55], [56], which extracts representative
and generalizable features from multiple output channels.
In addition, each output channel is bound by skip connections,
i.e., additive paths. The skip connections between the different
outputs of networks ease the residual learning to achieve multi-
output-channel consistency.

B. Residual Learning for Multi-Output-Channel
Consistency

Residual learning has been studied previously [57], [58].
The introduction of a skipping path in the residual learning
simplifies the network architecture and reduces the need for
training data. Here, we adopt the residual learning of correlated
multiple tasks that can effectively reduce the search range in
the feature space. In our proposed network the consistency
regularization scheme is implemented by the additive paths
among relevant multiple-output tasks. Assume that fz(x; θ)
is the parameterized function to map the input vector x to
right before the additive paths in each output channel. Here,
z ∈ {0, 1, · · · c0 − 1}, c0 is the number of output channels
or tasks taken in account, and θ is the network parameters.
Given the fz(x; θ), we can define the output (prediction) of
each channel as follows,

P0 = f0(x; θ) for the main-output channel, (1)

Pz = P0 + fz(x; θ)|z �=0 for the auxiliary-output channels.

(2)

Using Eqs. (1) and (2), P0 for the main-output channel can
be rewritten as follows,

P0 = 1

c0
[P0 +

∑c0−1

z=1
{Pz − fz(x; θ)}]
× for the main-output channel. (3)

Eq. (3) suggests that the residual learning for P0 can be
reached by the main-output channel (P0) itself. Therefore, all

output channels in our model conduct the residual learning
for P0, leading to refined P0. In other words, residual learn-
ing is an effective way to utilize multi-output consistency.
In section VII (APPENDIX), the mathematical approach and
associated optimization process for the proposed network is
explained in detail.

C. Network Architecture and Training Details

A state-of-the-art segmentation architecture, mU-Net [8],
was applied as the backbone network. To increase the network
capacitance, the feature encoder for all output channels were
shared, as shown in Fig. 2. We applied three different output
types for tumor segmentation with three different decoding
paths in our framework.

As shown in Fig. 3, the main-output prediction p0 is the
binary mask of tumors (i.e., tumor delineation with binary
masking); the auxiliary-output prediction p1 is the combi-
nation of tumor-contour delineation and the original input
image restoration; and the auxiliary-output prediction p2 is the
tumor delineation with intensity-based input-image clustering.
In other words, p2 has the simple structure information of the
image and tumor-mask information.

The convolution kernels were initialized using a truncated
normal distribution with mean of zero and standard deviation
of 0.05, and constant bias values of 0.1. The parameters were
updated by the adaptive moment (Adam) algorithm [59] with
an adaptive learning rate to improve learning efficiency. The
starting learning rate was empirically set as 0.001 to avoid
divergence and improve convergence speed, and it was scaled
by 0.97 for every 5 epochs. The decay of moving average for
batch normalization was set to 0.9. The probability of dropout
for regularization was set to 0.65. The batch size was set as
15 to balance the GPU memory constraints and learning time.
The samples were shuffled in each training epoch.

We referred Myronenko’s study [55] to apply multiple loss
functions and set weights for them. This study provided the
analysis of multiple loss functions and their scaling factors,
which is relevant to multi-task learning (MTL). We set loss
functions for each output channel and the corresponding
scaling factors as follows: dice loss for p0, combination of
L2 loss and KL loss for p1. The L1 loss were applied to
p2, as the prediction result for the second auxiliary-output
channel includes two clustered regions and L1 loss works well
for simple texture region [60] via imposing sparsity on loss
calculation. The weights for the three output channels were
initialized as ω0 : ω1 : ω2 = 1 : 0.1 : 0.1. Finally, the network
was trained to minimize the total value of these loss functions.
Furthermore, additional forward calculation was performed to
check the feasibility of adaptive update for the weights in each
loss function. Specifically, weights were adaptively updated
by the rule in Fig. 4 according to the specific performance of
three tasks at the current iteration. The weights were adjusted
by the deterministic ratio at every iteration to get the best
dice score for the prediction result of the main-output channel
at every iteration. The network optimization was performed
on a DGX Station from NVIDIA running Linux operating
system with an Intel Xeon E5-2698 v4 2.2 GHz (20-Core)
CPU and two Tesla V100 GPUs (32 GB memory for
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Fig. 1. Illustration of multi-output-channel consistency scheme. The whole framework is composed of different but related output channels to guide
network learning.

Fig. 2. Multi-output-channel consistency regularized deep neural
network.

Fig. 3. Various segmentation tasks applied to the proposed network.

each GPU). The network architecture was implemented
with the well-known DL framework TensorFlow [61]. The
expanded network architecture to multi-class segmentation
dataset is shown in Supplementary Figure 1(a)1 and to fully
3D model is shown in Supplementary Figure 1(b).2

1Supplementary materials are available in the supporting documents.
2Supplementary materials are available in the supporting documents.

Fig. 4. Illustration of weight generator for adaptive weights. First,
the weights are reset before generating the new weights at each iteration.
Then, dice scores of D0, D1, and D2 at every iteration are calculated from
the main-output channel, auxiliary-output channel 1, and auxiliary-output
channel 2, respectively. According to the relative comparison among
dice scores, weights are changed to get the highest dice score for the
main-output channel. e.g., if D0 is highest, all weights are fixed, and if
D0 is not highest, w0 should be increased. The rates of change were
determined empirically.

TABLE I
THE QUANTITATIVE RESULTS OF THE PROPOSED NETWORKS AND

OTHER COMPARED NETWORK FOR THE LUNG-TUMOR DATASETS

(AVERAGED PRECISION, RECALL, AND DICE SCORE)

IV. EXPERIMENTS

A. Datasets and Preparation

The public dataset for the lung tumor segmentation in
this study were obtained from the Decathlon Challenge [62].
The dataset includes 60 CT scans with small tumors. The
image size is 512 × 512. In our study, we first randomly
selected 48 patient scans for training, 4 for validation, and
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TABLE II
THE 95 % CONFIDENCE INTERVAL FOR THE RESULTS IN TABLE I

TABLE III
THE p-VALUES FOR THE PROPOSED METHOD WITH ADAPTIVE

WEIGHTS (I.E., PROPOSED (A)) OF THE LUNG DATASET.
WE PERFORMED t-TEST UNDER THE NULL HYPOTHESIS H0:
µPROPOSED (A) = µC , WHERE C STANDS FOR THE COMPARED

METHODS AND µ IS THE MEAN VALUES IN TABLE I. WE CAN REJECT

H0 AT THE SIGNIFICANCE LEVEL 0.05 BECAUSE ALL p-VALUES ARE

FOUND TO BE LESS THAN 0.05. THE PROPOSED (A) DO NOT HAVE

p-VALUES BECAUSE THE t -TESTS WERE PERFORMED BASED ON HOW

MUCH THE RESULTS OF OTHER METHODS WERE DIFFERENT FROM

THAT OF THE PROPOSED (A)

8 for test. We then repeated the process with a different
patient-level split of training, validation, and test datasets. The
final results were obtained by averaging test results from five
repetitions of data splits. The data-split policy is described in
Supplementary Figure 2.3 The method was also applied to the
liver tumor segmentation with datasets from the Liver Tumor
Segmentation Challenge (LiTS-ISBI2017) [18]. The dataset
includes 130 abdomen contrast CT scans. The image size of
each CT slice is also 512 × 512. Total 104 patient scans were
used for training, 5 for validation, and 21 for test. Again, a
patient-level split was performed in the same way as described
earlier. To train the network, the original tumor-annotation
mask images were regenerated to the annotations for the two
different auxiliary-output channels, as shown in Fig. 3. The
generated label images for auxiliary-output channels were
based on the intensity level of the input and the corresponded
label pair of the datasets. Supplementary Figure 34 describes
the ways of each annotation is generated.

B. Performance Evaluation

To verify the performance of the proposed method, we com-
pare the proposed method with three other different methods.
The first case was the original mU-Net for only predicting p0.
The second case was the (independent/separate training mod-
els) ensemble learning. Specifically, we trained one mU-Net
for only predicting p0, another mU-Net for only predicting
p1, and the other mU-Net for only predicting p2. At the
final stage, the segmentation region was obtained by averaging
the tumor masks from the three channel predictions. The third

3Supplementary materials are available in the supporting documents.
4Supplementary materials are available in the supporting documents.

compared model (MTL) was the network with the encoder
sharing from multiple-output channels, but without the additive
paths, so that it is similar with the previous Myronenko’s
method [55] and can be used to validate the effect of the
additive paths in the network. Also, we conduct ablative study
on our methods with and without the proposed adaptive weight
adjusting scheme in Section IV-C,D (denoted as P(A), and
P(F), respectively). For the mU-Net in the first case, the
loss function was defined as Dice loss. For the ensemble
learning, the mU-Nets employed Dice loss for p0, (L2 loss
+ KL loss) for p1, and L1 loss for p2, respectively. For
the MTL case, the same loss functions with the proposed
method were applied. The evaluations were performed with
the widely used metrics of precision, recall, and dice score
for the prediction results. Here, MTL and proposed method
used only p0 for evaluation. All methods adopted the same
dropout and batch normalization scheme. In addition, the
performance was also analyzed with respect to the size of
training datasets and tumor sizes to show the effectiveness of
the proposed network. All processing for data analysis were
implemented using MATLAB (9.7.0.1261785, R2019b, The
MathWorks Inc., Natick, MA).

C. Results on Lung Datasets

The averaged precision, recall, and dice score of lung
datasets are shown in Tables I-III and Supplementary Fig-
ure 4.5 Precisions of all methods are more than 0.96, which
means the detected tumors are well delineated. Furthermore,
the proposed framework has the highest precision. As for
the recall metric, the compared networks have values lower
than 0.86, while the proposed network achieves 0.91 and
0.92 for fixed weights (P(F)) and adaptive weights (P(A)),
respectively, suggesting that the proposed network has less
chance to fail the tumor delineation. Note that the recall can
vary up to 9 % depending on the different learning schemes.
The proposed network produces the highest dice score (0.93)
and the adaptive weighting manner has a slightly higher
improvement. We show the distribution of the dice score across
different tumor sizes in Fig. 5. This distribution shows the
reason why the proposed network achieves a higher recall
scores than other networks. As we can see, for the small size
of tumor targets less than 30 pixels, all methods fail the target
delineation. However, for the relatively larger tumor targets,
only the proposed network successfully segments the tumors
while the compared networks fail to locate the tumors less
than 70 pixels. The dice scores are almost saturated when
the size of tumors is larger than 100 pixels. The other dice
score plot with respect to the size of datasets in right side of
Fig. 5 shows the performance of the proposed network under
insufficient training datasets. When only 70 % training datasets
were applied, the proposed network still has a dice score
higher than 0.8, while dice scores of other compared methods
are around 0.7. The dice score of MTL(F) (M) is always higher
than those of mU-Net (U) and Ensemble (E) cases when the
available datasets are reduced.

5Supplementary materials are available in the supporting documents.
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Fig. 5. Dice scores with respect to the size of lung tumors and datasets
are shown in the second row. U, E, M, P(F), and P(A) mean the mU-
net, ensemble learning, multi-task leaning, proposed network with fixed
weights, and the proposed network with adaptive weights, respectively.

Fig. 6. Segmentation images with respect to the size of training datasets
for lung-tumor datasets. The first column in the magnified images (42 px)
is the results of mU-Net (U). The second, third, fourth, and fifth columns
are the results of Ensemble (E), MTL (M), proposed network with
fixed weights P(F) and proposed network with adaptive weights P(A),
respectively. The red contours denote the ground truth and the green
contours represent the prediction results from each method. No green
contours in the magnified images means the method fail to delineate the
tumor.

TABLE IV
THE QUANTITATIVE RESULTS OF THE PROPOSED NETWORKS AND

OTHER COMPARED NETWORK FOR THE LIVER-TUMOR DATASETS

(AVERAGED PRECISION, RECALL, AND DICE SCORE)

Figure 6 shows some visual segmentation results with
respect to different sizes of the training dataset. As can be
observed from Fig. 6, when training with small size of the
datasets, all networks fail delineation of the small target
tumor except the proposed network. The proposed network
can successfully detect and segment the tumors even if only
half of training datasets were applied.

We can also see the effect of gain from the main-output
channel and the auxiliary-output channels respectively,
as shown in Fig. 7 (left side). The binary mask (p0) served
as the main-output channel provides the highest dice score.
Figure 7 (right side) also shows the relative computational
costs of each method. Although the proposed network has
twice larger computing cost than that of mU-Net, it has the
highest accuracy with smaller cost than Ensemble learning and
similar cost with MTL.

Fig. 7. Performance of the proposed method with respect to order of
the output channels in P(A) case (left side). For example, (p0, p1, p2)
means p0 for main-output channel, p1 for sub-output channel 1, and p2
for sub-output channel 2. In the same manner, (p0, p2, p1) means p0 for
main-output channel, p2 for sub-output channel 1, and p1 for sub-output
channel 2. Relative cost for computing for each method (Right). The
proposed network has higher cost than mU-Net case but not higher than
those of other methods.

TABLE V
THE 95 % CONFIDENCE INTERVAL FOR THE RESULTS IN TABLE IV

TABLE VI
THE p-VALUES FOR THE PROPOSED METHOD WITH ADAPTIVE

WEIGHTS (I.E., PROPOSED (A)) OF THE LIVER DATASET.
WE PERFORMED t-TEST UNDER THE NULL HYPOTHESIS H0:
µPROPOSED (A) = µC , WHERE C STANDS FOR THE COMPARED

METHODS AND µ IS THE MEAN VALUES IN TABLE IV. WE CAN REJECT

H0 AT THE SIGNIFICANCE LEVEL 0.05 BECAUSE ALL p-VALUES ARE

FOUND TO BE LESS THAN 0.05. THE PROPOSED (A) DO NOT HAVE

p-VALUES BECAUSE THE t -TESTS WERE PERFORMED BASED ON

HOW MUCH THE RESULTS OF OTHER METHODS WERE DIFFERENT

FROM THAT OF THE PROPOSED (A)

D. Results on Liver Datasets

The averaged precision, recall, and dice score of different
methods on liver datasets are presented in Tables IV-VI and
Supplementary Figure 4.6 In this case, precisions were not
sensitive to each network. All networks produce more than
0.99 values on the precision, which implies that the delineated
tumors are extremely accurate. For the recall scores, the
similar trend to lung tumor segmentation is observed. The
proposed network has the highest recall value of 0.89 and
0.90 for P(F) and adaptive weights P(A), respectively, while
other compared networks have values lower than 0.87. In other
words, the proposed network hardly fails the tumor delin-
eation in comparison to other networks. Besides precisions

6Supplementary materials are available in the supporting documents.
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Fig. 8. Dice scores with respect to the size of liver tumors. Here,
100 pixels and 1000 pixels correspond to 32 mm2 and 336 mm2,
respectively. U, E, M, P(F), and P(A) mean the mU-net, ensemble
learning, multi-task leaning, proposed network with fixed weights, and
the proposed network with adaptive weights, respectively.

Fig. 9. Segmentation images with respect to the size of training datasets
for liver-tumor datasets. The full length 512 pixels of the CT scan corre-
sponds to 30cm, the magnification window length 125px corresponds to
73mm. The first column in the magnified images (125 px) is the results of
mU-Net (U). The second, third, fourth, and fifth columns are the results
of Ensemble (E), MTL (M), proposed network with fixed weights P(F)
and proposed network with adaptive weights P(A), respectively. The red
contours denote the ground truth and the green contours represent the
prediction results from each method. No green contours in the magnified
images means the method fail to delineate the tumor.

and recalls, the proposed network also achieves the highest
dice score. On the other hands, the compared networks have
dice score lower than 0.92. There are few small sizes of
tumors in liver datasets, but the proposed network still achieves
higher dice score across almost different size of tumors (see
Fig. 8). For liver datasets, the plot of dice score with respect
to different size of training datasets also shows that the
proposed network outperforms other networks (Fig. 8). The
visual segmentation results of different methods are shown in
Fig. 9. The delineations for each network are pretty accurate,
as the liver tumors are more obvious and larger than that
of lung tumors, when full training datasets were applied.
However, the accuracy gets worse when training datasets are
decreased, while the proposed network provides more accurate
delineations than other networks under the limited training
dataset.

V. DISCUSSION

Although DL has achieved dramatically better performance
than conventional machine learning models for many medical
image analysis problems, there is still room for improvement.
A bottleneck issue impeding the widespread applications of
DL models is that the training process of deep neural net-
works is vulnerable to insufficient training data and the small
tumor targets. This challenging issue can be alleviated by
imposing regularization methods in the optimized objective.

Batch or group normalization are widely used regularization
techniques. Shibani et al. [63] have shown that real impact
of the batch normalization is not internal covariance shift
but smoothing of landscape in the underlying optimization
problem. However, it may not work well in some scenarios
(e.g., small size of mini-batch and large variance of the
dataset) [64]. Other regularization methods may be directly
applied to the objective functions, but success has been
limited because they usually rely on some prerequisites for
regularization terms that are not easy to expand to general
applications. In this study, we bring up a new network regu-
larization scheme based on multi-output-channel-consistency
learning.

In the proposed regularization scheme, the output channels
are discomposed into two types: one is a main-output channel
and the other are auxiliary-output channels relevant to the main
task. Moreover, there are additive paths connecting the main-
output channel and the auxiliary-output channels for efficient
joint learning. Through the additive paths, the regularization
is achieved by interaction between the main-output channel
and the auxiliary-output channels. The main-output channel
and auxiliary-output channels regularize mutually during the
network update process. In other words, in our learning model,
multiple auxiliary-output channels can provide different facets
of the inferred information, so that the network learning can
effectively utilize multi-output-task consistency via residual
learning. The residual images of the multiple outputs in our
method are likely to improve the learning efficiency via the
task consistency, as shown in Supplementary Figure 5.7 The
grad-CAM analysis based on [66] also suggests that the pro-
posed network generates more discriminative representations
to better describe the target tumor as compared to other
methods (Supplementary Figure 68).

Further performance improvement may be possible by
adding more auxiliary-output channels until the information
from auxiliary-output channels becomes redundant. However,
due to the GPU memory limitation, we used the main-output
channel and two auxiliary-output channels in our experiments.
Notably, the proposed network is capable of delineating small
tumors less than 100 pixels even with only 55 % of the training
datasets. Furthermore, using the adaptive weighting, we can
get slightly higher accurate delineations. The weight for each
of the training steps is shown in Supplementary Figure 79

and more sophisticated weight policies can provide further
improvement of the network performance. If we design the
adaptive update rule more carefully, a better result would
be expected. Training with a small sample size often causes
overfitting to the dataset. To minimize the limitations caused
by small data samples and ensure generality of this study,
we repeated the learning process five times with different
splits of training, validation, and test datasets (i.e., patient-level
splits). We also expanded our network to multi-class seg-
mentation dataset (BraTS). The performance of the proposed
method is clearly better as compared with other methods

7Supplementary materials are available in the supporting documents.

8Supplementary materials are available in the supporting documents.
9Supplementary materials are available in the supporting documents.
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without consistency regularization of multi-output channels
(Supplementary Table I10). In the future work, we would also
investigate how to create a more efficient auxiliary output
channel (task) and how to reduce the empirical choice for
the adaptive update.

While colossal advances have been made in using DL for
medical image analysis, there is little guarantee that perfect
inference will be resulted when a model is generalized to
new data unseen in the training. The proposed methodology
improves the robustness of DL model by leveraging the
interaction of output channels applied to the network. From
the results shown in this study, accuracy of the segmentation
results reaches the highest values beyond limitation of other
previous methods and provides new chances for other practical
applications.

VI. CONCLUSION

This paper presents a multi-output-channel consistency
regularization method for DL-based image segmentation.
In the proposed strategy, the main-output channel and
auxiliary-output channels are connected through the addi-
tive paths and make a joint decision with consideration of
the requirement of each individual channel. The evaluation
performed with public lung- and liver-tumor segmentation
datasets demonstrates the superiority of the proposed method.
Finally, while the current study is focused on segmentation,
the proposed residual learning methodology is quite general
and can be applied to other practical applications which can
be formulated as a problem with multiple output channels.

APPENDIX

A. The Learning Process of Single Output Channel

The deep neural networks are optimized to minimize the
predefined loss objective function. To find the minimum
loss value with respect to the network parameter θ =[
θ0 · · · θd−1

]T , the gradient descent method is usually lever-
aged in optimization, where the gradient of the loss function
(∇L) is calculated as follows,

θ i+1 → θ i − λ ∇L|θ=θ i ,

∇L = ∇L0 (p0) ·p�
0 (θ) ,

=
[
�

p0
0 · θ0

0 · · · �
p0
0 · θd−1

0

]T
,

≡ V
[
�

p0
0 · θq

0

]d−1

q=0
, (A.1)

where i is the iteration number, · denotes the inner product,
L0 is the specific loss function which is a function of p0,
p0 = [

x p0
0 · · · x p0

r−1

]T
is a vector of the prediction result

at the specific network with parameters of θ , and λ is a
learning rate. V denotes a vector that is composed of its
elements. For example, V [

a j
]b−1

j=0 = [
a0 · · · ab−1

]T. �
p0
0 and

θq
0 are defined as

[
∂L0

∂x
p0
0

· · · ∂L0

∂x
p0
r−1

]T
and

[
∂x

p0
0

∂θq
· · · ∂x

p0
r−1

∂θq

]T
,

respectively. In other words, each step to update network
weights is affected by the selected loss function L0, and the
current network prediction result p0.

10Supplementary materials are available in the supporting documents.

B. Expanded Learning From Multiple Output Channels

Eq. (A1) describes the gradient calculation of a single
loss function and the general form of multiple loss elements
with respect to multiple output channels can be expanded as
follows,

∇L = V
[(∑c0−1

k=0
α0,k�

p0
0,k

)
· θq

0

]d−1

q=0
,

≡ V
[
�̂

p0

0 · θq
0

]d−1

q=0
, (A.2)

where c0 is the number of the tasks taken in account. α0,k

is a weight for scaling the k-th loss elements and �
p0
0,k is

defined as
[

∂L0,k

∂x
p0
0

· · · ∂L0,k

∂x
p0
r−1

]T
when L0 = ∑c0−1

k=0 α0,kL0,k .

Then, the weight vector for
θq
0 is averaged by multiple �

p0
0,k so

that the updating step can be toward more precise way than the
case using a single loss element (i.e., noise vector smoothing).
Now, we can explain how multiple loss aggregation in single
output channel contributes to network learning. In other words,
intuitively, there is no one-size-fits-all loss function that can
include the multidimensional information with a scalar value.

Next, the easiest way to combine multiple output channels
with Eq. (A2) is to define the final loss function as weighted
sum of the loss functions defined in each output channel as
follows,

∇L = V
[∑m

k=0
ωk �̂

pk

k · θq
k

]d−1

q=0
. (A.3)

Here, for k-th output channel, �̂
pk

k is defined as∑ck−1
j=0 αk, j �

pk
k, j , and

θq
k is defined as

[
∂x

pk
0

∂θq
· · · ∂x

pk
r−1

∂θq

]T
.

In this case, it is expected to optimize the weighted sum
of loss functions in different output channels. However, this
straightforward scheme does not guarantee that predictions of
all output channels can reach the optimal results at the same
time.

C. Expanded Learning From Multiple Output Channels
With Additive Paths

To achieve a better prediction result through the interaction
among multiple output channels, in our proposed framework,
the multiple output channels are categorized into two types:
main-output channel (prediction result p0) and auxiliary-
output channels (prediction results p1, · · · , pn). In this way,
we can focus on improving the main-output channel with
the regularization from the auxiliary-output channels learning.
To this end, the network outputs of different output channels
are connected by additive paths from the main-output channel
to other auxiliary-output channels, as shown in Fig. 1. With
the additive paths, the gradient calculation of the final loss
functions of the proposed network can be represented as
follows,

∇L = V
[(∑n

k=0
ωk �̂

pk

k

)
· θq

0

]d−1

q=0

+ V
[∑n

k=1
ωk �̂

pk

k · (
θq
k − θq

0 )
]d−1

q=0
, (A.4)
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where
θq
k − θq

0 =
[

∂(x
pk
0 −x

p0
0 )

∂θq
· · · ∂(x

pk
r−1−x

p0
r−1)

∂θq

]T
means the

derivative of difference in prediction results. In the proposed
network, the weight for

θq
0 is averaged by �̂

pk

k (i.e., regu-
larization of main-output channel via loss functions of multi-
output channels). For the auxiliary-output channels, we employ
the residual learning technique [65] as shown (

θq
k − θq

0 )
in Eq. (A4) so that the network can keep attention on the
main-output channel prediction for more efficient learning.
Consequently, the auxiliary-output channels and the corre-
sponding loss functions are able to provide a regularization
effect to the main-output channel, which is relevant to the
first term in Eq. (A4). Also, the main-output channel serves
as an ‘anchor’ in the residual learning to make the learning
of auxiliary-output channels easier, which is relevant to the
second term in Eq. (A4).
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