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Abstract— Image regression tasks for medical applica-
tions, such as bone mineral density (BMD) estimation and
left-ventricular ejection fraction (LVEF) prediction, play an
important role in computer-aided disease assessment. Most
deep regression methods train the neural network with a
single regression loss function like MSE or L1 loss. In this
paper, we propose the first contrastive learning framework
for deep image regression, namely AdaCon, which consists
of a feature learning branch via a novel adaptive-margin
contrastive loss and a regression prediction branch. Our
method incorporates label distance relationships as part of
the learned feature representations, which allows for better
performance in downstream regression tasks. Moreover,
it can be used as a plug-and-play module to improve per-
formance of existing regression methods. We demonstrate
the effectiveness of AdaCon on two medical image regres-
sion tasks, i.e., bone mineral density estimation from X-ray
images and left-ventricular ejection fraction prediction from
echocardiogram videos. AdaCon leads to relative improve-
ments of 3.3% and 5.9% in MAE over state-of-the-art BMD
estimation and LVEF prediction methods, respectively.

Index Terms— Bone mineral density estimation, con-
trastive learning, ejection fraction prediction, image
regression.

I. INTRODUCTION

MEDICAL image classification and segmentation with
convolutional neural networks (CNNs) have seen huge
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adoption in various applications for computer-aided diagnosis,
such as disease grading [1], [2], organ segmentation [3],
[4], and tumor segmentation [5]–[8]. Comparatively, medical
image regression tasks based on CNNs have received less
attention. Unlike classification and segmentation problems,
regression tasks generate continuous value predictions that
are important indicators for various disease assessments in
clinical practice. Two examples of this are bone mineral
density (BMD) and left-ventricular ejection fraction (LVEF).
BMD is used to identify osteoporosis, determine the risk
of fractures, and measure patient response to osteoporosis
treatment [9]. Typical BMD values for the Asian population
range between 0.5-0.9, with a low reading indicating loss of
bone mass and higher risks of fractures. LVEF is a percentage
measurement of how much blood the left ventricle pumps
out with each contraction, serving as an essential indicator to
diagnose and track heart failure. Normal LVEF ranges from
55% to 70%, with LVEF higher than 75% or lower than 40%
indicating a potential for heart failure or cardiomyopathy [10].
Early detection and accurate assessment of BMD and LVEF
are important for early intervention in clinical practice.

Early works for image regression relied on hand-crafted
filters as feature inputs in a multivariate regression model.
For example, Pulkkinen et al. [11] estimate BMD by apply-
ing a gradient filter to patches of femur-neck X-ray images
and calculating summary statistics as feature inputs. Similar
techniques have also been applied for computer vision tasks
using natural images, such as facial age estimation [12],
[13] and single-image depth estimation [14]. Recent progress
in image regression has increasingly featured deep learning
techniques [15]–[17]. For instance, Luo et al. [15] used a
VGG backbone [18] on cardiac magnetic resonance volumes
to directly regress ventricular volumes. Ouyang et al. [16]
employed the R2+1D ResNet network [19] to directly regress
LVEF values from echocardiogram videos. Among these
works, mean squared error (MSE) is used as the loss function
to measure prediction error and supervise training. Alternative
loss functions such as L1 loss [20], Huber Loss [21], [22], and
Tukey loss [23] have also been proposed for image regression
as ways to reduce the effect of sample outliers.

Although different regression loss functions have been
explored, model performance from training with a singular
regression loss function can still be limited. Recently, con-
trastive learning has shown great promise for feature represen-
tation learning in a variety of computer vision tasks, such as
unsupervised pretraining [24]–[27], image classification [28],
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and video detection [29]. For example, Chen et al. [24]
showed that their unsupervised SimCLR framework achieves
comparable performance with state-of-the-art performance
on ImageNet classification. Khosla et al. [28] further demon-
strated that contrastive learning used in a supervised setting
could surpass state-of-the-art ImageNet results. Although con-
trastive learning has demonstrated excellent performance for
various tasks, adapting it for image regression problems still
remains under-explored.

In this paper, our goal is to explore the feasibility of
contrastive learning for image regression tasks. One naïve
solution is to treat each continuous value as an individual
class and use the supervised contrastive loss function to learn
feature representations [28]. However, this method ignores the
underlying distance relationships between labels, leading to
inferior results; see results of SupCon in Tables II and IX.
To this end, we present a simple and effective framework,
namely AdaCon, that introduces a novel distance-adaptive
contrastive loss function to model distance relationships in
the representation space for image regression tasks. AdaCon
conducts contrastive learning and regression prediction in
a multi-task framework and learns features that are more
consistent with the regression task, thus improving the overall
prediction performance. We demonstrate our methodology on
two medical image regression tasks, i.e., BMD estimation from
X-rays images and LVEF prediction from echocardiogram
videos.

The key contributions of this study are:

• We present a simple yet effective framework (AdaCon)
for image regression tasks, consisting of a contrastive
feature learning branch for representation learning and a
regression estimation branch for regression. Our method
can serve as a plug-and-play component in existing
methods to improve image regression performance.

• AdaCon introduces a novel adaptive-margin loss function
to preserve distance and order relationships among con-
tinuous labels in the representation space. We show that
the enhanced feature representation can improve image
regression results.

• AdaCon achieves state-of-the-art performance on two
medical image regression tasks: BMD estimation from
single X-ray images and LVEF prediction from echocar-
diogram videos.1 Ablation studies demonstrate AdaCon’s
superior performance over other methods. Results are also
validated using three additional datasets.

II. RELATED WORK

In this section, we review contrastive learning for represen-
tation learning and some of its applications. We further discuss
related works for BMD estimation and LVEF prediction.

A. Contrastive Learning

1) Unsupervised Representation Learning: In the early
stages of unsupervised representation learning, researchers
relied on dimension-reduction techniques such as PCA [30],
and clustering-based methods on image patches [31]–[33] to

1Code is available at https://github.com/XMed-Lab/AdaCon

extract feature representations. With the popularity of deep
learning techniques, architectures like deep auto-encoders,
which introduce dimension reducing bottlenecks and are
trained by minimizing reconstruction error [34]–[36], have
become increasingly used. Studies have also explored pretrain-
ing networks on pretext tasks such as image transformation
identification, showing that it can be an effective way to learn
feature representations for images [37]–[39]. The pretrained
networks can then be applied to downstream tasks by training
a classifier on top of the feature extractor.

In recent years, however, contrastive learning methods have
dominated this field. Chen et al. [24] proposed the SimCLR
framework, in which a network is pretrained to identify
positive sample pairs, defined as samples augmented from the
same source image. They demonstrated that when fine-tuning
the pretrained network to perform downstream image classi-
fication tasks, they can achieve state-of-the-art performance,
sometimes even exceeding results from supervised learning.
Similarly, MoCo identifies augmented images from the same
source by maximizing feature similarity between positive pairs
using a momentum encoder, thus reducing the reliance on large
batch sizes [40]. Subsequent variations adopt improvements
from SimCLR and vision transformers into Moco_v2 [27]
and Moco_v3 [41]. Additional studies have also looked at
improving performance through stronger augmentations [42],
adapting underlying concepts to different architectures [43],
or using contrastive learning for unsupervised tasks like
clustering [25].

2) Contrastive Learning for Downstream Applications: Given
the stunning improvements seen in unsupervised representa-
tion learning, researchers started to adapt contrastive methods
to various downstream tasks such as image classification [28],
[44], segmentation [45], [46], and video detection [29].
Khosla et al. [28] showed that by using label information to
identify additional positive-pair samples through supervised
contrastive learning, classification accuracy on the bench-
mark ImageNet classification can be improved by 0.8%.
Wang et al. [44] also demonstrated that contrastive learning
can be used to improve classification performance for highly
imbalanced datasets. Wang and Zhao et al. [45], [46] demon-
strated that contrastive learning can be used to improve perfor-
mance on image segmentation tasks by performing contrastive
learning on pixel-level features instead of global features.
By considering temporal information, Dave et al. [29] also
showed that contrastive learning can also be used efficiently
to learn feature representations for videos.

Although contrastive learning has been applied to various
tasks, adapting it to regression remains an open and non-trivial
problem. This study proposes a simple adaptive contrastive
learning framework, AdaCon, that allows the same principles
to be applied to continuous value prediction. We demonstrate
that AdaCon can be used as a general technique to improve
performance for different image regression tasks.

3) Comparison With Deep Metric Learning: Contrastive
learning is closely related to traditional distance metric learn-
ing, which uses margins to impose separation between differ-
ent classes in the feature space [47]–[50]. The main difference
between the two is that contrastive learning generalizes to an
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arbitrary number of positive and negative sample pairs. In con-
trast, metric learning loss functions, such as triplet loss [48]
and N-pair loss [50], are restricted in the number of pairs
they use. Triplet loss, in particular, is known to be unstable
and highly dependent on hard-sample mining [49]–[51]. The
number of possible triplet combinations also scales at a cubic
rate relative to sample size, making it difficult to sample well
for large batch sizes. Khosla et al. [28] show analytically that
the SupCon loss function is a more general form of metric
learning loss that reduces to triplet loss and N-pair loss under
certain conditions and is a superior alternative. They also show
empirically that SupCon outperforms these losses due to the
inherent hard-mining properties of its loss function.

Distance metric learning has been successfully used in
regression problems by making the separation margins adap-
tive. The adaptive triplet loss, for example, imposes larger
margins on samples pairs with larger differences in val-
ues [17], [52]. However, these functions still rely on triplet
sampling and only applies constraints within each sampled
triplet group. Unlike this method, the optimization of our
method is performed over an entire batch with constraints
applied simultaneously across all samples, contributing to a
more stable training process and better feature representations.
We also empirically show in Tables II and IX that AdaCon
outperforms adaptive triplet loss.

B. Bone Mineral Density Estimation From Plain X-Ray
Films

Medical imaging studies on bone X-rays have traditionally
been focused on fracture detection [53]–[55], disease diag-
nosis [56], [57], or segmentation [57], [58]. Little attention
has been given to bone mineral density (BMD) estimation,
which is important for diagnosing osteoporosis, a condition
characterized by decreased levels of bone density. BMD is
calculated as bone-mass/coverage-area (g/cm2) over an region
of interest, typically the femur-neck or spine, and the gold
standard is measurement by dual-energy X-ray absorptiometry
(DXA). However, due to the limited availability of DXA
devices, especially in developing countries, osteoporosis is
often under-diagnosed and under-treated. Compared to DXA,
plain X-ray films are easier and cheaper to obtain. Therefore,
alternative lower-cost BMD evaluation methods using more
accessible mediums like X-ray films are highly beneficial.

Early works explored using handcrafted features from
X-rays to correlate BMD. Pulkkinen and Chappard [11],
[59] for example both calculate texture-based summary sta-
tistics on X-ray patches to regress on BMD using multi-
variate regression. Deep learning methodologies have also
been used recently following their popularity in computer
vision problems. Chu et al. [60] use a siamese network on
patches from dental radiographs to perform osteoporosis diag-
nosis. Wang et al. [61] use a GCN on chest X-rays to first
perform ROI detection before regressing image crops on BMD
with a VGG-16 network and MSE loss. Hsieh et al. [20]
use a VGG-11 network and L1 loss to regress BMD from
femur-neck and spine vertebrate crops after performing ROI
detection. Zheng et al. [17] use a VGG architecture for BMD

regression with additional adaptive triplet loss and semi-
supervised learning.

Most of the existing techniques for BMD estimation only
use a single regression loss to supervise the training process
with no further optimization considered on the feature space.
In contrast to these methodologies, we present a novel plug-
and-play framework, AdaCon, that can be used for different
regression tasks. By performing BMD regression and feature
representation learning with AdaCon in a multi-task approach,
we can outperform alternative methods by ensuring better fea-
tures are learnt, as seen in Table II. Notably, Zheng et al. [17]
use the adaptive triplet loss function in addition to regres-
sion loss for BMD estimation. We show analytically and
empirically that contrastive learning with AdaCon is a better
alternative to their methodology.

C. Ejection Fraction Prediction From Echocardiogram
Videos

Ejection fraction is the percentage change of a patient’s
left-ventricular volume between the end-diastole phase (EDV)
and the end-systole phase (ESV). It is an indicator for the
heart’s blood-pumping capability and is commonly used to
diagnose heart failure [62]. Measurement is normally done
manually by outlining the left ventricle in echocardiograms
during different stages of a heart beat and estimating the
corresponding volume. This process is laborious and can also
lead to significant inter-observer variation [16], [63], therefore
driving the need for automated techniques.

Automated LVEF prediction has been studied using both
still imaging and video inputs. The most common approach is
to first estimate EDV and ESV volumes from still frames and
then calculate LVEF based on these values. Luo et al. [15]
use cardiac magnetic resonance data to perform deep regres-
sion with MSE loss for volume estimation after image
pre-processing and slice selection. Zhen et al. [64] use a
regression forest model to jointly regress the left and right
ventricle volumes from MRI images with MSE. An alternative
technique is to treat volume estimation as a segmentation
problem and use the segmented area to estimate volume.
Jafari et al. [65] use Bayesian estimation for ventricle seg-
mentation from ultra-sound echo cines for volume estimation.
Liu et al. [66] introduce a pyramid local attention module
to capture local feature similarities to improve segmentation
accuracy.

Instead of learning from still images, Ouyang et al. [16]
proposed to predict LVEF values directly from echocar-
diogram videos using their collected dataset, EchoNet-
Dynamic. They regress video inputs directly using a R2+1D
ResNet [19] backbone against LVEF values with MSE loss.
Reynaud et al. [67] also explored LVEF prediction on the
EchoNet-Dynamic dataset by using a video transformer net-
work to identify ED and ES frames, which is then used to
perform segmentation and volume estimation.

Current deep regression methodologies employ the MSE
loss to train the network and do not consider optimizations
on the feature space. Unlike these methodologies, we design
a new framework, AdaCon, that improves image regression
prediction via an improved feature representation learning.
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III. METHODOLOGY

We denote D:= {(xi , yi )}N
i=1 as the training dataset con-

sisting of N image-label pairs, where yi is the label of
image xi . Our goal for contrastive learning is to learn a
feature embedding network fθ (·) from the training dataset.
The network fθ (·) maps the input xi to a L2-normalized
d-dimensional embedding, zi , such that zi = fθ (xi ) ∈ S

d−1

and lies on the unit hypersphere. Let I denote the sam-
ple indices for a randomly sampled batch during training.
We denote P(i):={ j ∈ I | y j = yi , j �= i} as the set of indices
for all positive samples for anchor sample i , i.e., samples with
the same label as yi . The negative pairs in the batch are images
with different labels to anchor sample i , the indices for which
can be denoted as: Q(i):={ j ∈ I | y j �= yi }.

One naïve approach to contrastive learning for regression is
to apply image augmentations to a batch, treat each continuous
label as an individual class, and apply SupCon loss [28]
directly. Then, the loss function can be expressed as:

Lsup =
∑

i∈I

−1

|P(i)|
∑

p∈P(i)

log
exp(s cos(θi,p))∑

a∈I\i exp(s cos(θi,a))
, (1)

where s denotes the temperature scaling factor, usually deter-
mined empirically, and cos(θi, j ) = zT

i z j .
Intuitively, for an anchor sample with label 0.5 and negative

samples of labels 0.4 and 0.1, the sample with label 0.4 should
be closer to the anchor image than the one with label 0.1 in
the representation space. However, by using the SupCon loss
function directly, both negative samples are treated the same
during optimization, leading to inferior results. We can see
this empirically in Tables II and IX.

To tackle this problem, we must also capture the relationship
between the continuous labels in the representation space.
For example, given a randomly sampled batch I with anchor
sample i and samples j, k such that yi ≤ y j ≤ yk , the expected
relationship between the sample feature projections is:

cos(θi, j ) ≥ cos(θi,k) . (2)

This is because we expect the sample with label closer to the
anchor i to have features that are more similar. Equation (2)
should also be true for samples where yi ≥ y j ≥ yk . We can
apply adaptive margins at the decision boundaries between
different sample pairs to encourage our model to learn this
relationship. By incorporating label distance and ranking infor-
mation into the learned representations, the features learned
will be more consistent with the regression task.

A. Adaptive Contrast Method

In contrastive learning for supervised settings, we identify
positive sample pairs, defined as pairs with the same labels,
amongst a randomly sampled batch. We add an adaptive
margin di,q into our decision boundary to introduce label
ordering and distance information. For any positive sample
p ∈ P(i) and negative sample q ∈ Q(i), we would like to
achieve the following:

cos(θi,p) > cos(θi,q ) + di,q . (3)

We want to choose our adaptive margin function, di,q , based
on the following characteristics:

1) For any i, j, k ∈ I where yi < y j < yk , or yi > y j >
yk , we have di,k > di, j . This means we want a larger
margin imposed on the feature similarity of sample pair
(i, k) compared to (i, j ) because sample k is further away
from i in label space.

2) Because the cosine function is bounded between
(−1, 1), we want di,q to be dispersed within the range
of (0, 2) to encourage feature separation for stronger
representation learning.

Based on these characteristics, we define the adaptive margin
di,q as follows:

di,q = 2 × |φ(yi ) − φ(yq)|. (4)

where φ is the empirical cumulative distribution function
(ECDF) [68], defined by:

φ(yi ) = 1

N

N∑

j=1

�y j ≤yi . (5)

It is easy to see that our adaptive margin function di,q

satisfies both conditions above. Condition one is satisfied
because φ is a monotonically increasing function and φ(yi ) <
φ(y j ) < φ(yk) if yi < y j < yk . Therefore, margin di,k is
greater than di, j . This is also true if yi > y j > yk , because
we have φ(yi ) > φ(y j ) > φ(yk). The ECDF also provides
a natural mapping of label values onto the (0,1) range by
normalizing the label distribution to a uniform distribution
[69]. This ensures margin values are robust to different label
distributions, even if they are heavily skewed. Condition two
is satisfied because the range of di,q is within (0,2), which
encourages feature separation.

We can incorporate our adaptive margins into the supervised
contrastive loss function in (1) by adding it after the cosine
similarity term, giving us:

Lcon =
∑

i∈I

−1

|P(i)|
∑

p∈P(i)

log
exp(s cos(θi,p))∑

a∈I\i exp(s(cos(θi,a) + di,a))
,

(6)

where di,a follows definition (4). The loss function is mini-
mized when all positive pairs are correctly identified within
sample batch I, i.e. when condition (3) is satisfied, thus
enforcing our adaptive decision boundary constraints. A more
detailed derivation of (6) is provided in Appendix A. We
use this adaptive-margin loss function to supervise contrastive
feature learning in our AdaCon framework. Fig. 1 illustrates
AdaCon’s loss function as compared to SupCon using a
simplified example on the 2D plane.

1) Margin Analysis: The ECDF of some value y, φ(y),
is the sample estimate of Pr(Y < y). Using this as part of
our adaptive margin function gives us a number of desirable
properties.

The first property is that the ECDF reduces the effect
of sample outliers on margin values because of distribution
normalization [69]. For example, for some outlying value y j ,
its relative order ranking will be preserved by the adaptive
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Fig. 1. (a) For classification based supervised contrastive loss, SupCon [28], samples that form positive pairs are pulled closer together in
the angular space, whilst negative pairs are pushed further apart. The boundary condition for correct positive-pair identification is zT

i zp > zT
i zqj ,

i.e.���(θi,p) > ���(θi,qj
), where p ∈ P and qj ∈ Q; negative pairs are pushed apart indiscriminately. (b) By adding adaptive margins to the boundary

conditions for classification, we enforce the model such that the feature projections zq2 is pushed further apart on the angular space compared to
zq1 if yp < yq1

< yq2
or yq2

> yq1
> yp.

margin di, j after transformation, but the margin will not be
excessively large because of large differences in label value.
This allows for greater feature separation within the (−1, 1)
range for remaining samples.

The second property is that the ECDF transformation gives
an intuitive mapping of the adaptive margin function based
on sample probability. For example, for samples i, j where
yi > y j , we can substitute di, j with 2 ×|φ(yi)−φ(y j )| at the
decision boundary to give us:

cos(θi,p) − cos(θi, j ) = 2 × |φ(yi ) − φ(y j )| . (7)

The value |φ(yi ) − φ(y j )| is equal to the sample estimate of
Pr(y j < Y < yi ). Therefore, at the decision boundary, the
margin between the cosine similarity values is proportional to
the sample probability of observing a value between y j and yi .
This means if there are a larger number of observed samples
with labels between y j and yi , we will impose a larger margin
between cos(θi,p) and cos(θi, j ). If there are fewer samples, the
margin will be smaller.

B. Comparison With Adaptive Triplet Loss

Adaptive methods for distance metric learning have been
used in [17], [52] for regression tasks by introducing vari-
able separation margins based on label differences into the
standard triplet loss function. The major shortfall of triplet
loss however is that it is highly dependant on the triplets
sampled, but the number of possible triplets grows at a
cubic rate relative to batch size, making it difficult to do so
effectively [49]–[51]. Margins are also calculated and applied
only within each triplet group. Unlike adaptive triplet loss,
AdaCon simultaneously applies constraints to all samples
within a batch, optimizing their features simultaneously dur-
ing the training process. Also, the contrastive task identifies
positive pairs and therefore only grows at a quadratic rate
relative to batch size. It is generalizable to multiple positive
and negative pairs.

We analytically demonstrate in Appendix B that AdaCon
can be regarded as an improved, general form of adaptive
distance metric learning by showing that the adaptive-margin
loss function reduces to an approximation of adaptive triplet
loss in the case of only one positive and one negative pair.
We also support this empirically by demonstrating in our
experiments that AdaCon outperforms adaptive triplet loss,
as can be seen in Tables II and IX.

C. Full Framework

The network architecture in our proposed framework con-
sists of a feature extraction backbone and two prediction
branches: one for regression and one for contrastive learning.

The contrastive learning branch outputs feature projections
and is composed of a dense layer, a ReLu activation layer,
a final dense layer with an output dimension of 128, and a
L2 normalization operation. For each input batch {xi; i ∈ I},
input samples undergo augmentation to form an augmented
batch {x �

i; i ∈ I}. The two batches are used together in
the AdaCon loss function to calculate contrastive loss, Lcon .
Positive pairs are defined as inputs with the same ground truth
labels, which in most cases will be augmented images from
the same sample source, i.e., {xi , x �

i }.
The regression branch is used to generate the prediction

output for the target value from the input batch {xi; i ∈ I},
and can be supervised with either MSE or robust alternatives
like L1 and Huber loss. The regression loss, Lreg , is optimized
together with the contrastive loss in a multi-task training
scheme. The total loss is:

Ltotal = γregLreg + γconLcon , (8)

where γreg and γcon are weights for regression and adaptive
contrastive loss respectively and control the relative impor-
tance of the two tasks. We fix γreg = 1 and set γcon

such that the weighted loss values for both tasks are within
similar magnitudes after the first training epoch. We show in
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Fig. 2. Under the AdaCon framework, a contrastive prediction branch
and a regression branch are added after the feature layer for feature
representation learning and regression prediction respectively. The con-
strastive learning branch is supervised with AdaCon loss which is trained
together with a regression loss in a multi-task scheme.

Tables IV and XI that our results are robust to slight differ-
ences in selected values for the weight parameter. A visual
illustration of our framework is shown in Fig. 2

IV. EXPERIMENTS

We demonstrate the effectiveness of our method on two
medical image regression tasks: BMD estimation from X-ray
images and LVEF prediction from echocardiogram videos.

A. BMD Estimation From X-Ray Images

1) Experimental Setting:
a) Dataset: Dual-energy X-ray absorptiometry (DXA) is

the gold standard for diagnosing osteoporosis and monitoring
changes in BMD over time. We use the BMD readings from
DXA scans as ground truth labels and collect corresponding
X-ray images taken within 6 months of the DXA scans
as our model input, following similar settings in [17], [20].
In total, we collect 475 valid hip X-ray images from
317 patients who have had a DXA scan performed between
2016-2020. The X-ray images were collected using Carestream
Health - DRX-EVOLUTION and Canon Inc. - CXDI Control
Software NE machines. DXA scans were performed using
Hologic - Horizon A machines. We present some summary
statistics of the dataset in Tables XIV and XV of Appendix C.
The anonymized data was provided by Queen Mary Hospital
in Hong Kong. The study was approved by the Institutional
Review Board of the University of Hong Kong/Hospital
Authority Hong Kong West Cluster (IRB no: UW19-732) and
requirement for informed consent was waived.

b) Preprocessing: The 415 X-ray images were pre-filtered
by a radiologist to contain only anteroposterior views of the
hip such that the femur-head and femur-neck are clearly
visible. Those containing displaced fractures in the femur-
neck, where the head has been entirely detached, or containing
a prosthesis were also excluded. We then take square crops
of the X-ray images around the femur-head and neck region,
which are the region of interests corresponding to hip DXA
scans. We first use the tool LabelImg2 to find the square

2https://github.com/tzutalin/labelImg

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART

METHODS FOR BMD ESTIMATION

region that tightly encloses the femur head and neck. We then
expand the bounds by 10% in all directions to incorporate
neighbourhood regions within our crop. This yielded a total
of 667 square crops centered on the femur with sizes between
800-1200 pixels. Some examples of valid and invalid crops
are shown in Fig. 5 of Appendix C.

We apply random data augmentations including horizontal
flips, rotations, and frame jitters during sampling. The crops
are resized to 128 × 128 pixels before being fed into our
network. We perform four-fold cross-validation for all the
experiments and report the averaged performance across folds.

c) Training details: We use EfficientNet-B1 [70] as our
backbone for BMD estimation and initialize with weights
pretrained on ImageNet. We use SGD as our optimization
algorithm with learning rate of 10−2, momentum of 0.9,
and weight decay of 10−4. The network is trained for 6,000
iterations with learning rate decay of factor 0.1 at 3,000 and
4,500 iterations. For the regression prediction branch, we use
L1 loss for supervision, which provides the highest regression
baseline from our experiments (see Table III).

Contrastive learning benefits from a large batch size since
more negative sample pairs can be formed to improve results.
To obtain more samples per batch, we enlarge the batch size by
following the batch augmentation methodology in [71]. We use
an original batch size of 8 and an augmentation multiple of 8.
Experiments were conducted with a V100 GPU.

2) Comparison With State-of-the-Art Methods:
Hsieh et al. [20] used only L1 loss to directly regress
BMD values from femur-neck crops of X-ray images.
Zheng et al. [17], in addition to MSE loss, applied adaptive
triplet loss directly on the feature layer without using L2
normalization. Semi-supervised learning with unlabeled data
was also used to boost performance. We compare AdaCon
with these two methodologies to demonstrate the effectiveness
of our framework. To fairly compare with their results, we use
the same EfficientNet-B1 backbone.

We see from Table I that Zheng et al.’s method, leads to
better results than Hsieh et al., where only L1 loss is used
for training. AdaCon gives us the best performance across
all metrics, achieving 0.0592 on MAE, representing a relative
improvement of 3.3% over Zheng et al.. In clinical applica-
tions, raw BMD values are used to track patient response
to osteoporosis treatment or for disease diagnosis [9]. Our
improved methodology increases accuracy of BMD estimates,
which directly translates into more reliable disease tracking
and classification applications for computer-aided assessment.

3) Comparison With Other Representation Learning
Losses: To demonstrate the effectiveness of the proposed
adaptive-margin contrastive loss in AdaCon, we compare its
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TABLE II
COMPARISON OF DIFFERENT REPRESENTATION LEARNING

LOSS FUNCTIONS FOR BMD ESTIMATION

performance with alternative loss functions: N-pair loss [50],
SupCon loss [28], and adaptive triplet loss [28]. We also
compare with a regression baseline where only a single L1
loss is used. For fair comparison, we simply replace our
AdaCon loss with these alternative loss functions in our
framework and keep other parameters the same. For N-Pair
and SupCon loss, which are typically used for classification,
we treat each unique label as an individual class.

As shown in Table II, our method (AdaCon) achieves the
best results whereas classification based loss functions such
as N-Pair and SupCon perform worse than the baseline. This
is consistent with our expectations since treating all negative
samples the same without accounting for label distance can
result in inadequate features being learned. Adaptive triplet
loss leads to a decrease in MAE of 0.0024 compared to the
regression baseline, but the improvement is still lower than
ours. AdaCon achieves 0.0592 on MAE, an improvement of
0.0033 over the baseline.

We visualize the learned feature projections in Fig. 3 to
better understand the performance improvement. The top row
(Fig. 3a-d) shows the angular relationships of the learned
feature projections from the validation set, with blue (red)
lines representing low (high) BMD values. The bottom row
(Fig. 3e-h) plots feature similarity against the absolute dif-
ference of φ(y) for randomly sampled pairs. We can see
in Fig. 3d that by using AdaCon, the learned features are
well spread out in the angular similarity space, following
an orderly progression from low BMD (blue) to high BMD
(red). Similarly, we see there is a clear downward trend
in Fig. 3h, which demonstrates that pairwise samples with
large differences in BMD values tend to have lower cosine
similarity. This demonstrates that by using AdaCon, our model
is able to learn separable features reflecting label distances
based on feature similarities. This helps explain the stronger
performance on the regression task.

On the other hand, we can see from Fig. 3b and Fig. 3c.
that feature projections are not well separated using SupCon
and adaptive triplet loss. There is also no distinct downward
trend in their scatter plots (Fig. 3f and Fig. 3g). Although
the features learned by the N-pair loss (Fig. 3a) are well
separated, they do not follow the order of low BMD to high
BMD. There is also no clear relationship between pair-wise
feature similarity and label distance (Fig. 3e). The feature
representations learned using these loss functions are therefore
not as suitable, leading to worse regression performance.

4) Ablation With Different Regression Losses: AdaCon as a
framework can be used as a plug-and-play component with
existing regression losses to improve performance. We per-
form ablation analysis on the BMD dataset with and without

TABLE III
COMPARISON WITH DIFFERENT REGRESSION

LOSSES FOR BMD ESTIMATION

TABLE IV
COMPARISON WITH DIFFERENT VALUES

OF γcon FOR BMD ESTIMATION

AdaCon using three different regression losses: L1, MSE, and
Huber loss [21]. We set the delta parameter for Huber loss at
0.05, which is close to the MAE of our regression baselines.

We can see from Table III that adding AdaCon consistently
boosts performance due to the additional constraints on fea-
ture representations introduced through contrastive learning.
Relative improvements in MAE of 5.3%-11.1% can be seen
with the loss convergence greatly benefiting from the multi-
task prediction.

5) Ablation With Different Weight Parameters: During train-
ing, we fix γreg = 1 and set γcon such that the weighted loss
values for both tasks are within similar magnitudes after one
epoch. We perform ablation analysis on the weight parameter
γcon using values of 0.0025, 0.0050, and 0,0075 to show that
performance is robust to slight differences in chosen value.
Results are shown in Table IV.

Using γcon = 0.0050 and γcon = 0.0075 for training
gives us similar results. Prediction performance using γcon =
0.0025, where less importance is given to contrastive learn-
ing, is slightly worse but still outperforms Zheng et al. [17]
(0.0603 s 0.0612). Overall, AdaCon achieves superior results
for similar magnitudes of γcon .

6) Ablation Under Different Training Schemes: We examine
the use of different training schemes on model performance to
justify our choice of multi-task training. We compare with a
two-stage training scheme consisting of pretraining with con-
trastive learning and fine-tuning with regression. Pretraining
with only AdaCon loss was done using SGD with a learning
rate of 10−2 for a total of 3,000 iterations and learning rate
decay of factor 0.1 at 1,500 and 2,250 iterations. Fine-tuning
using L1 loss was done with a learning rate of 10−3 for a total
of 3,000 iterations and learning rate decay of 0.1 at 1,500 and
2,250 iterations. Results are shown in Table V.

We can see that two-stage training schemes leads to
poor convergence due to inadequate network initialization for
regression fine-tuning. Multi-task training on the other hand
reliably leads to better performance for all cases, with best
results seen from using AdaCon with multi-task training.

7) External Validation: We validate performance using two
additional datasets: one with X-ray images obtained using
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Fig. 3. Plots (a) - (d) are the angular plots of feature projections on the 2d plane. The feature representations of the validation samples are inferred,
and the two samples that give the minimum cosine similarity value are used endpoints. The remaining features are distributed based on cosine
similarity with the endpoints. Blue (red) color represents low (high) BMD. The wider and more orderly the spread of features from low to high BMD,
the better the results. Plots (e) - (h) are scatter plots for randomly sampled pairs of feature vectors, i and j. The x axis is the label distance after
applying ECDF; the y axis is feature similarity. The more distinct the downward trend in the scatter plot, the better the results. Fig. 3d and Fig. 3h
clearly show AdaCon is able to learn the best feature representations for the BMD task.

TABLE V
RESULTS USING DIFFERENT TRAINING

SCHEMES FOR BMD PREDICTION

Fujifilm machines from Queen Mary Hospital (Fujifilm
dataset), and another with X-ray images obtained from Chang
Gung Memorial Hospital in Taiwan (CGMH dataset). The
X-ray images were paired with ground truth BMD readings
taken using Hologic - Horizon A machines.

a) Fujifilm dataset: We perform validation using X-ray
images taken by Fujifilm machines, an out of sample machine
model, to demonstrate generalization across different machine
types. The dataset consists of 19 X-rays from 19 patients
collected from Queen Mary Hospital. We use the same
pre-processing protocol as detailed in Section IV-A.1. Sum-
mary statistics are shown in Table XVI of Appendix C.
We use the trained models from our four-fold cross validation
experiments in Section IV-A.2 to run inference, taking the
average output of the four models as our final prediction.
Results are shown in Table VI.

AdaCon (ours) gives the best performance on this valida-
tion dataset, which is consistent with our results in Table I.
MAE for AdaCon is 0.0071 lower than the methodology in

TABLE VI
TEST RESULTS FOR BMD ESTIMATION USING

FUJIFILM X-RAY MACHINES

Zheng et al. [17], representing a relative decrease of 10.9%.
We also see that the performance metrics are within similar
range of the values in Table I (0.0580 s 0.0592). The results
demonstrate that our trained model generalizes well across
different X-ray machine manufacturers and that AdaCon learns
more relevant features compared to alternative methods.

b) CGMH dataset: We perform a second external valida-
tion using data provided by Chang Gung Memorial Hospi-
tal (CGMH) to demonstrate generalization across different
hospitals. The dataset consists of 100 X-ray images paired
with BMD labels. A number of X-rays were excluded based
on our pre-processing protocol as they contained displaced
fractures or were not of anteroposterior views as determined
by a radiologist. The remaining dataset consisted of 61 X-rays
from 61 individual patients. Patient summary statistics are
shown in Table XVII of Appendix C. Results are shown in
Table VII.

The MAE values based on our methodology is higher
than what we obtained in Table I (0.0722 s 0.0592), but
the standard deviation of BMD in the CGMH dataset is also
larger, as seen in Tables XVII and XIV (0.1568 s 0.1291). Our
proposed methodology performs better than both Hsieh et al.
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TABLE VII
TEST RESULTS FOR BMD ESTIMATION USING CGMH DATASET

TABLE VIII
COMPARISON WITH THE STATE-OF-THE-ART METHODS

FOR LVEF PREDICTION

and Zheng et al., and decreases MAE by 0.0019 compared to
Zheng et al., a relative improvement of 3%. These results show
that our method generalizes across datasets from different
hospitals.

B. LVEF Prediction

1) Experimental Setting:
a) Dataset: We use the EchoNet-Dynamic dataset, which

is a public dataset consisting of 10,036 apical-4-chamber
echocardiogram videos collected from Stanford University
Hospital [16]. The dataset is paired with left-ventricular ejec-
tion fraction (LVEF), end-systolic volume (ESV) and end-
diastolic volume (EDV) labels. The echocardiogram videos
are collected using iE33, Sonos, Acuson SC2000, Epiq 5G,
and Epiq 7C ultrasound machines. Summary statistics on the
dataset are shown in Table XVIII of Appendix C. Additional
details of the dataset can also be found in [72]. The data
has already been pre-processed by removing irrelevant text
information and re-scaled to 112 × 112 pixels. Training,
validation, and test splits have already been prepared. Frame
jitter is applied as part of the augmentation process.

b) Training details: We follow the original model imple-
mentation and training scheme specified in [16] and add
our contrastive prediction branch after the feature layer. The
backbone uses a R2+1D ResNet [19] pretrained on Kinetics-
400 [73] and the entire model is trained with SGD using a
learning rate of 10−4 and momentum of 0.9 over 45 epochs,
with decay of factor 0.1 every 15 epochs. MSE is used as the
regression loss function. Clips of 32 frames, sampled from
the video at a rate of 1 in every 2 frames, were used as the
model input with a batch size of 20. Due to the large memory
requirements, we do not add additional batch augmentation
operations. We use the validation set to choose the best trained
model over all epochs and report results on the test splits. Each
experiment was run on three V100 GPUs for approximately
12 hours.

2) Comparison With State-of-the-Art Methods: State-of-the-
art performance on the Echonet-Dynamic dataset is achieved
by Ouyang et al. [16], where sampled frames are regressed
directly on LVEF values using a R2+1D backbone and MSE
loss. We compare our performance using AdaCon with their
results in Table VIII.

We can see that AdaCon out-performs Ouyang et al.’s
methodology and decreases MAE by 0.24, a relative improve-
ment of 5.9%. LVEF is commonly used as an indicator to

TABLE IX
COMPARISON OF DIFFERENT REPRESENTATION LEARNING

LOSS FUNCTIONS FOR LVEF PREDICTION

TABLE X
COMPARISON WITH DIFFERENT REGRESSION LOSSES

FOR LVEF PREDICTION

diagnose heart conditions [10], and more accurate predictions
using our methodology can lead to more reliable tracking and
diagnosis of cardiac disease.

3) Comparison With Other Representation Learning Losses:
Similar to the BMD estimation task, we compare our proposed
loss function against alternatives to demonstrate its effective-
ness. We compare against N-pair loss [50], SupCon loss [28]
adaptive triplet loss [17], and a baseline where only regression
loss is used. Results are reported in Table IX.

We see that using N-Pair loss leads to reduced performance
when compared to baseline, whilst SupCon and adaptive triplet
loss decreased MAE by 0.05 and 0.18 respectively. The largest
performance gain occurs when using AdaCon, achieving MAE
of 3.86, or an improvement of 0.24 over baseline.

We visualize the learned feature representations in Fig. 4
and see that by using AdaCon for feature representation
learning, the feature vectors are able to achieve an even and
orderly spread in terms of their angular similarity (Fig. 4d).
A clear downward trend can also be seen between pair-wise
feature cosine similarity and label distance, indicating the
learned features successfully reflects label order and distance
in terms of their similarity values.

On the other hand, we can see from Fig. 4a and Fig. 4e
that there is little relation between feature similarity and label
distance in the representations learned using N-pair loss. For
SupCon, we see a downward-sloping trendline in Fig. 4f,
but the relationship is not very strong. The features learned
using adaptive triplet loss are well spread out in Fig. 4c,
but similarity values are clustered around 1 and −1 with
little observations in-between (Fig. 4g). Features learned by
these alternative loss functions therefore do not reflect label
relationships as well as AdaCon.

4) Ablation Under Different Regression Losses: We demon-
strate that applying AdaCon consistently boosts performance
independent of different choices for the regression prediction
branch. We use three different regression loss functions: MSE,
L1, and Huber Loss and present the results with and without
using AdaCon in Table X. We set the delta value for Huber loss
at 4, which is close to the MAE of our regression baselines.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 04,2022 at 08:39:50 UTC from IEEE Xplore.  Restrictions apply. 



1264 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 5, MAY 2022

Fig. 4. Plots (a) - (d) are the angular plots of feature projections on the 2d plane. Blue (red) color represents low (high) LVEF values.
Plots (e) - (h) are scatter plots for randomly sampled pairs of feature vectors, i and j. The x axis is the label distance after applying ECDF; the
y axis is feature similarity. Fig. 4d and Fig. 4h clearly show AdaCon is able to learn the best feature representations for the LVEF task.

TABLE XI
COMPARISON WITH DIFFERENT VALUES OF γcon

FOR LVEF PREDICTION

Similar to what was observed for BMD estimation, the use
of our AdaCon framework consistently boosts performance.
Relative improvements in MAE of between 0.7% - 5.9% can
be seen independent of the regression loss used. The improve-
ment in feature representation learning from the contrastive
prediction task reliably improves performance on the regres-
sion branch.

5) Ablation With Different Weight Parameters: We perform
ablation analysis on the weight parameter γcon using values
of 0.50, 0.75, and 1.00 and show results in Table XI.

The performance metrics are within the same range for
all three weight values and outperform the methodology in
Ouyang et al. [16], demonstrating robustness to values of γcon

within similar magnitudes.
6) Ablation Under Different Training Schemes: Pretraining

was done by training the model with only AdaCon loss for
25 epochs, using a learning rate of 10−4, momentum of 0.9,
and decay of factor 0.1 at epochs 10 and 20. The model is then
fine-tuned with MSE loss by training for 25 additional epochs,
starting with a learning rate of 10−5 and decaying with factor
0.1 at epochs 10 and 20.

We see from Table XII that multi-task training is consis-
tently more effective than two-stage training. Although the
difference between the two schemes is smaller than as seen

TABLE XII
RESULTS USING DIFFERENT TRAINING SCHEMES

FOR LVEF PREDICTION

with the BMD dataset (Table V), the two-stage training still
fails to out-perform the plain regression baseline. Overall, the
best performance is observed when using AdaCon with muti-
task training.

7) External Validation: We perform external validation on
the CAMUS echocardiogram sequence dataset [74] to demon-
strate generalization of LVEF prediction across hospitals.
The CAMUS dataset contains a series of echocardiogram
sequences taken from 500 patients at the University Hospital
of St Etienne in France and is split into a training set of
450 patients and a test set of 50 patients. The dataset is
acquired using GE Vivid E95 ultrasound scanners and consists
of a 2-chamber sequence view and a 4-chamber sequence view
for each patient. Manual segmentations and volume labels for
the EDV and ESV frame are provided for the training set
only. Sequences are also classified into three classes of quality:
good, medium, or poor. The dataset was originally designed for
a segmentation challenge using the EDV and ESV frames, but
the sequence data and labels can be easily adapted to perform
LVEF prediction.
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TABLE XIII
TEST RESULTS FOR LVEF PREDICTION ON CAMUS

DATASET BASED ON QUALITY

We evaluate performance of our trained models using the
4-chamber training set sequences. Table XIX in Appendix C
shows summary statistics of the dataset. In addition to differ-
ences in acquisition machine, the sequences in the CAMUS
dataset also contain much fewer frames on average (20 frames
s 175 frames). We resize all sequences to 112 × 112 pixels
and use the same parameters and data processing pipeline.
We show results on overall performance as well as perfor-
mance categorized by sequence quality in Table XIII.

Overall performance shows that AdaCon (ours) is bet-
ter than Ouyang et al. and decreases MAE by 0.45,
a relative improvement of 6%. MAE is higher than on
EchoNet-Dynamic results in Table VIII however (6.78 s 3.86)
because CAMUS sequences have much fewer frames on aver-
age. We also see that our methodology performs consistently
better in all three quality classes compared to the model trained
only using regression loss. The use of our AdaCon framework
for improved feature representation learning consistently leads
to stronger performance, even across different data sources.

V. DISCUSSION

We demonstrated the effectiveness of our AdaCon loss
function through ablation experiments in Tables II and IX.
We also discussed several desirable properties of our adaptive
margin function in Section III-A. Although we achieve good
empirical results, there are still possible limitations to our
current formulation that could potentially be improved. The
current adaptive margin function imposes a prior assumption
on the mapping between label space distance and feature
space distance, which may not be the most optimal. It is
possible that a learned mapping or one with looser constraints
may perform better. Also, the margin function relies on the
ECDF for transformation, which implicitly assumes that the
sample label distribution of the training set is representative of
true label distribution. This may be reasonable for relatively
large datasets but may not be the case for smaller datasets
or those that have been artificially skewed. Thus, there may
exist alternative formulations of the adaptive margin function
that lead to better performance. The task of finding a better
adaptive margin function is a potential direction for future
research.

VI. CONCLUSION

We present a novel adaptive contrastive learning frame-
work, AdaCon, for image regression in computer-aided dis-
ease assessment. The adaptive-margin loss function used

TABLE XIV
PATIENT STATISTICS FOR BMD DATASET

by AdaCon allows us to capture label ordering and
probability-normalized distance relationships in our learned
features. The features better reflect continuous relationships
between sample labels, thus improving performance when
applied to regression tasks. The effectiveness of our method
has been demonstrated on two medical image regression tasks:
BMD estimation from X-ray images and LVEF prediction
from echocardiogram videos. Results are also consistent when
tested on external validation datasets for both tasks. Our
method is general and can be flexibly combined with existing
regression loss functions, such as MSE and L1, as well as
different feature-extraction backbones. This improved method-
ology can help increase accuracy and reliability of deep
regression tasks for various medical applications.

APPENDIX A
DERIVATION OF ADACON LOSS

We wish to incorporate adaptive margins as defined in (3)
within the decision boundaries of the standard SupCon loss
function, (1), for positive pair classification.

We first consider the case of a batch with three samples:
anchor sample i , positive sample p, and negative sample q .
Under SupCon loss, the sigmoid function for identifying the
positive pair is:

exp(s cos(θi,p))

exp(s cos(θi,p)) + exp(s cos(θi,q ))
. (9)

The positive pair is correctly classified if:
exp(s cos(θi,p)) > exp(s cos(θi,q )) , (10)

or equivalently:
cos(θi,p) > cos(θi,q ) . (11)

We incorporate our constraint in (3) into our decision
boundary, such that the positive pair is correctly classified
only if cos(θi,p) > cos(θi,q )+ di,q . This gives us the modified
sigmoid:

exp(s cos(θi,p))

exp(s cos(θi,p)) + exp(s(cos(θi,q ) + di,q ))
, (12)

and the corresponding cross-entropy loss:
− log

exp(s cos(θi,p))

exp(s cos(θi,p)) + exp(s(cos(θi,q ) + di,q ))
, (13)

Extending this to an arbitrary number of positive and
negative pairs in the sample batch gives us:

∑

i∈I

−1

|P(i)|
∑

p∈P(i)

log
exp(s cos(θi,p))∑

a∈I\i exp(s(cos(θi,a) + di,a))
(14)

where by definition of our adaptive margin in (4), di,a = 0 if
a ∈ P(i). This gives us our final AdaCon loss function in (6).
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Fig. 5. Examples of valid and invalid crops.

APPENDIX B
ADACON LOSS WITH ONE POSITIVE AND

ONE NEGATIVE PAIR

We show that the AdaCon loss function can be seen as a
general formulation for distance metric learning with variable
margins and reduces to approximate adaptive triplet loss when
using one positive and one negative pair. Making use of Taylor
approximations for log and exp, we can see:

Lcon = −log
exp(s(zT

i z p + di,p))

exp(s(zT
i z p + di,p)) + exp(s(zT

i zn + di,n))

= log(1 + exp(s(zT
i zn − zT

i z p + di,n)))

≈ exp(s(zT
i zn − zT

i z p + di,n))

≈ 1 + s(zT
i zn − zT

i z p) + sdi,n

= 1 + sdi,n − s

2
(�zi − zn�2 − �zi − z p�2)

= s

2
{�zi − z p�2 − �zi − zn�2 + 2di,n} + 1

∝ �zi − z p�2 − �zi − zn�2 + 2di,n .

The final line of the derivation approximates the adaptive
triplet loss function [17] where the margin value di,n varies
depending on the labels of the sample pairs.
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TABLE XV
MANUFACTURER INFORMATION FOR X-RAYS IN BMD DATASET

TABLE XVI
PATIENT STATISTICS FOR FUJIFILM DATASET

TABLE XVII
PATIENT STATISTICS FOR CGMH DATASET

TABLE XVIII
SUMMARY STATISTICS FOR LVEF DATASET

TABLE XIX
SUMMARY STATISTICS FOR CAMUS DATASET

APPENDIX C
DETAILS ON DATASETS

See Tables XIV–XIX and Figure 5.
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