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Rotation-Oriented Collaborative Self-Supervised
Learning for Retinal Disease Diagnosis
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Abstract— The automatic diagnosis of various conven-
tional ophthalmic diseases from fundus images is important
in clinical practice. However, developing such automatic
solutions is challenging due to the requirement of a
large amount of training data and the expensive anno-
tations for medical images. This paper presents a novel
self-supervised learning framework for retinal disease diag-
nosis to reduce the annotation efforts by learning the
visual features from the unlabeled images. To achieve this,
we present a rotation-oriented collaborative method that
explores rotation-related and rotation-invariant features,
which capture discriminative structures from fundus
images and also explore the invariant property used for reti-
nal disease classification.We evaluate the proposedmethod
on two public benchmark datasets for retinal disease clas-
sification. The experimental results demonstrate that our
method outperforms other self-supervised feature learning
methods (around 4.2% area under the curve (AUC)). With
a large amount of unlabeled data available, our method can
surpass the supervised baseline for pathologic myopia (PM)
and is very close to the supervised baseline for age-related
macular degeneration (AMD), showing the potential benefit
of our method in clinical practice.

Index Terms— Self-supervised learning, retinal disease
classification.

I. INTRODUCTION

FUNDUS photography is a valuable clinical tool for evalu-
ating various ophthalmic diseases, e.g., aged-related mac-

ular degeneration (AMD) [1], [2], glaucoma (GON) [3]–[7],
pathologic myopia (PM) [8], and diabetic retinopathy
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(DR) [9]. Recently, computer-aided detection techniques help
ophthalmologists to automatically diagnose these retinal dis-
eases by learning the representative features from fun-
dus images though the deep convolutional neural networks
(CNNs) [9]–[13]. These CNN-based methods require annota-
tions of diseases in the fundus images. However, annotating the
fundus image is tedious and expensive, where the professional
knowledge is also required. Self-supervised learning (SSL),
also called unsupervised visual representation learning, can
help in this regard by providing a strategy to pre-train a
neural network with unlabeled data, followed by fine-tuning
for a downstream task with limited annotations. Hence, in this
paper, our goal is to present a self-supervised method, which
learns the representative features from the data itself without
any human annotations. Then, the learned representation is
evaluated on retinal disease classification tasks.

Recently, self-supervised learning has attracted increasing
attention in the medical imaging domain, due to it is free
from human-annotated supervision and its potential of lever-
aging the massive amount of unlabeled data. Various types
of self-supervised methods have been developed for multiple
medical applications, such as subject identification from spinal
MRI [14], cardiac MR image segmentation [15], lung lobe
segmentation and nodule detection [16], brain hemorrhage
classification and brain tumor segmentation [17], [18]. The
main idea is to pre-define a handcrafted pretext task, which
is used to train a deep neural network to learn the visual
features. The pretext task usually performs a transformation
to the input images and requires the trained model to learn to
predict properties of the transformation from the transformed
image.

In this work, we formulate a rotation prediction task
by adopting the rotation transformation to learn the
rotation-related features. This is based on the crucial obser-
vation that the growth of abnormal blood vessels behind
the macula tend to hemorrhage or leak fluid, which is an
important cause of AMD [19]. Hence, exploring the low-level
structure (e.g., vessel structures) information would be ben-
eficial for the observation of retinal diseases. We observe
that the structures of fundus images are sensitive to the
orientations, e.g., the optic disc, and the blood vessels have
specific directions, as shown in Figure 1(a). Hence, learning
to predict rotations helps discover the vessel structures of the
fundus images, which benefit self-supervised feature learning
and then improve the retinal disease diagnosis.
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Fig. 1. (a) shows the rotation prediction task. Each fundus image con-
tains the obvious structures, i.e., optic disc, and blood vessels. Rotating
a fundus image by 90◦ will change the obvious orientation of these
structures; (b) Images generated from one patient image under different
augmentations (positive pairs) should be similar in the embedding space,
while images from different patients (negative pairs) should be dissimilar.

Although the features learned by the rotation prediction
task have explored the representative features for fundus
images, these features make the diagnosis (classification)
results sensitive to the image orientation, i.e., the network will
produce different results for the input image with different
rotations. In our task, the goal is to differentiate abnormal
retinal diseases, which is invariant to image rotations. Hence,
in addition to learn salient features, we present multi-view
instance discrimination task to learn rotation-invariant features.
Specifically, as shown in Figure 1(b), the multi-view instance
discrimination aims to learn the feature representations that
are similar to the representation of transformed versions of
the input image and different from other images, where the
transformations include rotation, randomly scaling, cropping,
and the adjustment of the image brightness, contrast, and sat-
uration. By formulating the collaborative learning tasks, i.e.,
rotation prediction and multi-view instance discrimination,
we encourage the network to discover the discriminative struc-
tures of fundus images and explore the robust representation
used for fundus disease diagnosis, and then use the learned
features to improve the overall performance of fundus disease
diagnosis. Three public datasets are employed to validate the
effectiveness of our self-supervised method for retinal disease
diagnosis. We summarize the main contributions of this work
as follows:

• We present a novel rotation-oriented collaborative
self-supervised learning method for disease classification

from fundus images. Our method does not require any
human-annotated labels during feature learning. With a
large amount of unlabeled data available, our method can
surpass the supervised baseline for PM and is very close
to the supervised baseline for AMD (see Table II and III).

• We formulate a collaborative learning task that splits
features to learn rotation-related and -invariant repre-
sentations, which not only discover the discriminative
structures from fundus images but also explores the
invariant property used for retinal disease classification.

• Various experiments on two common eye diseases
classification tasks demonstrate the superiority of
our method than other state-of-the-art self-supervised
methods (4.2% absolute improvement on AUC for AMD).
Our code is publicly available at https://github.com/
xmengli999/Rotation-oriented-self-supervised

II. RELATED WORKS

In this section, we first review related works on automatic
ophthalmic disease diagnosis from fundus photography and
then discuss some recent literatures on self-supervised feature
learning.

A. Automatic Disease Diagnosis From Fundus
Photography

Automated identification of retinal diseases is a big step
towards early diagnosis and prevention of exacerbation of the
disease. Early works for automatic retinal disease diagnosis
from fundus photography are mainly based on the hand-crafted
features, such as AMD detection through texture analysis [20]
or color filter based features [21]. Recently, a large portion
of research is dedicated to supervised methods that show
remarkable results with convolutional neural networks for
automatic retinal disease recognitions [9], [12], [22]–[29]. For
example, Burlina et al. [23] proposed a pretrained OverFeat
feature for AMD classification from color fundus photos.
Grassmann [27] classified AMD diseases into 13 classes
through ensembling several convolutional neural networks.
Recently, Peng et al. [12] developed a DeepSeeNet based
on an Inception-v3 architecture [30] to identify patient-level
AMD severity. Their method first detects individual risk fac-
tors and then the results are obtained by combining values
from both eyes. For PM classification, Freire et al. [28]
employed Xception [31] with ImageNet pretrained weights to
classify PM and Non-PM from fundus images. Additional data
such as RIGA and REFUGE datasets are also utilized as the
training data. Xie et al. [32] trained the ImageNet pretrained
ResNet50 with the labeled training data to classify PM from
fundus images and this method achieved the highest result
(99.74%) on a PM classification challenge [33]. Guo et al. [34]
proposed a lesion-aware segmentation network to simultane-
ously classify and segment lesions.

However, these works are based on supervised learning,
which adopts a massive amount of labeled data for training,
and annotating fundus photography requires the substantial
effort of human experts. Different from the previous works,
in this paper, we focus on developing the self-supervised
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method for retinal disease diagnosis to reduce the annotation
efforts.

B. Self-Supervised Learning

Recently, self-supervised/unsupervised visual representation
learning has attracted increasing attention due to its enormous
potential of being free from human-annotated supervision
and its extraordinary capability of leveraging the boundless
unlabeled data. Various types of self-supervised methods have
shown promising results in multiple application fields. In this
section, we discuss some related self-supervised techniques in
the domain of medical images and natural images.

1) Medical Images: The key challenge for self-supervised
learning is identifying a suitable self-supervision task, i.e.,
pretext task, to train the neural networks. Notable pretext tasks
used in medical images include Rubik’s cube and Rubik’s
cube+ recovery [17], [18], anatomical position prediction [15],
reconstructing part of the image like image completion [35],
[36], 3D distance prediction [37], image-intrinsic spatial offset
prediction [38]. The common principle of these works is to
construct different pretext tasks by discovering supervisory
signals directly from the input data itself and train the deep net-
work to predict this supervisory information, from which the
high-level representation of the input is learned. For example,
Zhuang et al. [17] proposed the Rubik’s cube recovery task,
i.e., cube ordering, and orientation pretext tasks, for the brain
hemorrhage classification and tumor segmentation from CT
and MR images. Zhu et al. [18] further improved this method
and proposed Rubik’s cube+ recovery task, which contains an
additional masking identification pretext task. Bai et al. [15]
formulated an anatomical position prediction pretext task to
learn self-supervised features for cardiac MR image segmen-
tation. Spitzer et al. [37] introduced a pretext task, which aims
at predicting 3D distance between two patches sampled from
the same brain. Recently, Taleb et al. [39] developed a series
of 3D self-supervised methods for 3D medical images.

2) Natural Images: Most of the above self-supervised meth-
ods defined a handcrafted pretext task to learn visual repre-
sentation. This kind of idea has also been explored in the
natural images, such as relative patch prediction [40], [41],
image inpainting [42], colorizing gray-scale images [43],
image jigsaw puzzle [44], geometric transformations [45],
[46]. These methods are shown to be useful in various natural
images. Yet, even with suitable architectures, these methods
are being outperformed by contrastive methods [47].

Recently, contrastive methods [48]–[51], which are based
on the task of instance discrimination, currently achieve state-
of-the-art performance in self-supervised learning. The main
idea of contrastive approaches is to bring representations of
different views of the same image closer (‘positive pairs’) and
spread representations of views from different images (‘neg-
ative pairs’) apart. For example, Dosovitskiy et al. [52] pro-
posed to use the Softmax embedding with classifier weights to
calculate the feature similarity, however, it prevents explicitly
comparison over features, which results in limited efficiency
and discriminability. Wu et al. [49] developed a memory bank
to memorizes features of each instance. Ye et al. [50] calcu-
lated the positive concentrated property based on the “real”

instance feature, instead of classifier weights [52] or memory
bank [49]. He et al. [48] used a moving average network
(momentum encoder) to maintain consistent representations
of negative pairs drawn from a memory bank.

Most of the existing methods focus on designing a single
pretext task to learn visual feature representation. In con-
trast, we present a novel collaborative method to learn the
complementary information, i.e., rotation-related features and
rotation-invariant features, from different pretext tasks, thus
discovering the vessel structures in fundus images and dis-
criminative features for retinal disease diagnosis, respectively.

C. Learning Rotation-Invariant Features

Some methods learn rotation-invariant features by designing
the network architecture to be rotation-invariant [53]–[55].
For example, Cheng [53] introduced a rotation-invariant layer
and a Fisher discriminative layer and embedded them into a
neural network. Our method learns rotation-invariant features
by learning to predict rotations. Different from these related
works, our method is a self-supervised method without mod-
ifying network architecture.

III. METHODOLOGY

Figure 2 shows the workflow of the overall architecture of
our self-supervised method for retinal disease diagnosis. At the
beginning, we randomly sample m images from the training
dataset S = {xi }N

i=1. For each image xi , we apply random data
augmentation twice to generate x̂i and x̃i ; see the x1 and x2 as
examples in the Figure 2. Then, we generate the rotated images
by rotating these augmented images by 0◦, 90◦, 180◦, 270◦,
and each image is assigned with a rotation label 0, 1, 2, 3,
correspondingly. After that, a feature embedding network
F(·; θ) is utilized to map the input xi to a high-level fea-
ture vector f i , which is then decoupled into f (d)

i and f (r)
i .

These two decoupled features are collaboratively optimized
by a multi-view instance discrimination task and a rotation
prediction task. Finally, we employ the features learned from
the multi-view instance discrimination task to perform the
retinal disease classification. Below, we will elaborate on the
rotation prediction, multi-view instance discrimination, and
other network details.

A. Rotation Prediction Task

To discover the salient structures of fundus images, we per-
form the rotation prediction task to learn the rotation-related
features. The input xi is fed into a neural network (e.g.,
ResNet18) and we denote the output of the last residual block
as feature fi . Note that each image xi is rotated to obtain
xi,y as the inputs, the actual feature should be fi,y, y ∈
{0, 1, 2, 3}. To simplify the description, here, we use fi to
represent fi,y . Then, to reduce feature dimension and get a
high-level representation, two modules with a fully connected
layer, followed by a BN and a ReLU, are applied sequentially
after fi . Then, the feature is equally decoupled to f (r)

i and f (d)
i

along the channel dimension. Finally, a fully connected layer,
denoted as Fc(·; θc), takes the feature f (r)

i as the input and
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Fig. 2. The illustration of the proposed method. We randomly select m raw images in one mini-batch and random data augmentation is applied twice to
generate x̃i and x̂i. We visualize the case that m = 2 for visualization. Each image is rotated by

{
0◦, 90◦, 180◦, 270◦}

to derive the rotation-transformed
images, i.e., x̃i,1, x̃i,2, x̃i,3, x̃i,4, x̂i,1, x̂i,2, x̂i,3, x̂i,4. These images are fed into the neural network to learn the high-level feature f, which is decoupled
and then jointly optimized by two pretext tasks, i.e., a multi-view instance discrimination task and a rotation prediction task. Finally, we adopt the
features learned by the multi-view instance discrimination task and evaluate the learned features on retinal disease classification, based on a kNN
classifier.

generates four probabilities, followed by a Softmax operation.
As mentioned above, each image is assigned with a rotation
label, i.e., 0, 1, 2, 3. Then, the rotation prediction loss is
denoted as:

Lr = 1

4N

N∑
i=1

3∑
y=0

l(Fc(fi,y
(r); θc), y), (1)

where l is the cross-entropy loss [56] used for the classification
task and y ∈ {0, 1, 2, 3} is the rotation label.

B. Multi-View Instance Discrimination Task

To reveal the transformation-invariant representation for
retinal disease diagnosis, we present the multi-view instance
discrimination. As shown in Figure 2, x̃i,y and x̂i,y denote dif-
ferent data augmented views of image xi . The key hypothesis
of the instance discrimination task is that the good features
are shared between multiple views of the same fundus image.
Hence, the objective is that different data augmented views
(positive pairs) of a single image should be invariant in the
embedding space, while images from different patients (nega-
tive pairs) should be dissimilar, as illustrations in Figure 1(b).

After obtaining feature f (d)
i for image xi , we first use l2 nor-

malization to normalize f (d)
i , i.e.,

∥∥∥f (d)
i

∥∥∥
2

= 1. For simplicity,

in this section, we use fi to represent f (d)
i . The positive pair

is represented as
(̂
fi,y , f̃i,k

)
, where y and k denote the rotation

label, i.e., y, k ∈ {0, 1, 2, 3}. The negative pair is denoted as(̂
fi,y , f̃ j,k

)
, where i �= j ; see color illustrations in Figure 2.

For each iteration, we randomly sample m images from the

dataset. For each image xi , the augmented samples should be
classified into class i and the other images derived from x j

should not be classified to class i . Formally, the probability of
x̂i,y being recognized as class i is defined by

P(i |̂xi,y) =
exp

(∑3
k=0 f̃T

i,y f̂i,k/τ
)

∑m
j=1 exp

(∑3
k=0 f̃T

j,k̂fi,y/τ
) , (2)

where τ is the temperature parameter that controls the concen-
tration level of the sample distribution and τ is set to 0.1 by
default [49]. f̃T

i,ŷ fi,k denotes the cosine similarity between pos-

itive pairs while f̃T
j,k̂fi,y denotes the cosine similarity between

negative pairs. Through the Softmax embedding function
in Eq. (2), the network pushes “negative pairs” away and pulls
“positive pairs” together. The final objective is minimizing the
sum of the negative log likelihood over all the images within
the batch, which is described as:

Ld = −
∑

i

∑
y

logP(i |̂xi,y)

−
∑

i

∑
j �=i

∑
y

log
{
(1 − P(i |̃x j,y))

}
, (3)

where P(i |̂xi,y) is the probability of x̂i,y being recognized as
class i , and 1 − P(i |̃x j,y) is the probability of x̃ j,y not being
recognized as class i .

C. Network Details

1) Loss Function: The total objective is the weighted combi-
nation of a rotation prediction task and a multi-view instance

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 16,2022 at 14:58:44 UTC from IEEE Xplore.  Restrictions apply. 



2288 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 9, SEPTEMBER 2021

discrimination task. The objective is denoted by

L = Ld + λLr , (4)

where λ is a weighting factor, indicating the importance of the
rotation prediction task. In our experiment, we set λ = 1. We
also analyze the effects of λ in Table V.

2) Network Architecture: Our framework is based on the
ResNet18 [57], following the same setting as the previous
works [49], [50]. We apply a max pooling on the output
of the last residual block in ResNet18. Then, the feature
is flattened to a vector, and a fully connected layer, batch
normalization, and ReLU are sequentially applied to reduce
the feature dimension to 256. Then, f is equally split into f (r)

and f (d) to learn the rotation prediction task and the multi-view
discrimination task. A fully connected layer with the output
channel 4 is applied on f (r) to generate the probabilities for
each rotation type, while a l2 normalization layer is employed
on the f (d) to calculate the cosine similarities among features.

3) Implementation Details: At each training iteration, m
images are randomly selected, and random data augmentation
is applied twice to the selected images, resulting in 2m
generated images. Then each image is rotated by {0◦, 90◦,
180◦, 270◦} to derive the rotation-transformed images, hence,
the final batch size is 8m. In our experiments, m is set to 64.
This training strategy also takes the full advantage of relation-
ships among all instances sampled in a mini-batch. To evaluate
the learned feature, we apply the k-nearest neighbors (kNN)
classifier based on the f (d) and k is empirically set to 100.

The whole framework is built on PyTorch [58] with an
NVIDIA Tesla V100 32GB GPU. We resized images to
320 × 320 resolution. For data augmentation, we randomly
scaled and cropped images into the patches of size 224×224,
with a random scaling factor chosen from [0.2, 1.0]. Our
algorithm performs a randomly horizontal flip and has a
probability of 0.2 to randomly grayscale the input. The algo-
rithm also randomly blends the image to some extent with
its black version, grayscale version. This operation changes
the brightness, contrast, and saturation of the input image
with a random factor is chosen uniformly from [0.6, 1.4],
following the setting in [50]. The network is optimized with
Adam optimizer [59], the learning rate is set to 0.0001 and
the weight decay is 0.0001.

IV. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the effectiveness of our method, we per-
form normal and abnormal classification to diagnose
age-related macular degeneration (AMD) and pathological
myopia (PM) on two public ophthalmic disease datasets, i.e.,
Ichallenge-AMD and Ichallenge-PM, respectively. To the best
of our knowledge, these two datasets are the only publicly
available datasets for AMD and PM screening, respectively.

1) Ichallenge-AMD Dataset: Ichallenge-AMD dataset [60]
contains 1200 annotated retinal fundus images from both
non-AMD subjects (77%) and AMD patients (23%). Typical
signs of AMD that can be found in these photos include

drusen, exudation, hemorrhage, etc. Labels of AMD/non-
AMD, disc boundaries, and fovea locations, as well as bound-
aries of kinds of lesions are provided in this dataset. More
detailed information about the dataset can be seen from
Ichallenge-AMD website.1 During the feature learning stage,
we do not use any label information. Only the image-level
labels are used in the AMD/non-AMD accuracy evaluation
stage. The training, validation, and test dataset has 400 fundus
images, respectively. Since only training data is released with
annotations, we perform 5-fold cross-validation on the training
dataset.

2) Ichallenge-PM Dataset: Ichallenge-PM dataset [33] con-
tains 1200 annotated color fundus images with labels, includ-
ing both PM and non-PM cases. All the photos were captured
with Zeiss Visucam 500. More detailed information can be
found in the Ichallenge-PM website.2 Note that the training
stage does not need any annotations and only the image-level
annotations are utilized during the evaluation stage. We also
perform 5-fold cross-validation on this dataset.

3) EyePACS Dataset: To evaluate the transfer learning
capacity of our model among different diseases, we train the
self-supervised model on a large diabetic retinopathy (DR)
dataset, i.e., Kaggle’s Diabetic Retinopathy Detection Chal-
lenge (EyePACS) dataset,3 and report the classification result
on the Ichallenge-AMD and Ichallenge-PM datasets, respec-
tively. EyePACS dataset is sponsored by the California Health-
care Foundation and the images are captured under various
conditions and various devices. The left and right fields are
provided for every subject, and an ophthalmologist rate the
presence of DR in each image on a scale of 0 to 4. We
use the training dataset (35,126 images) in this dataset to
train our self-supervised model. Note that we do not use any
human-annotated labels in this dataset.

B. Evaluation Metrics

We use AUC, Accuracy, Precision, Recall, F1-score to
measure the classification performance. AUC stands for area
under the receiver operating characteristic (ROC) curve, which
measures the entire two-dimensional area underneath the entire
ROC curve. ROC curve is a graphical plot that illustrates
the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. The definitions of Accuracy,
Precision, Recall and F1score are shown as follows.

Accuracy = (T P + T N)/(T P + T N + F P + F N),

Precision = T P/(F P + T P),

Recall = T P/(T P + F N),

F1 = 2 ∗ (Recall ∗ Precision)/(Recall + Precision),

(5)

where T P, T N, F P, F N refer to true positive, true negative,
false positive, false negative, respectively.

1http://ai.baidu.com/broad/introduction?dataset=amd
2http://ai.baidu.com/broad/introduction?dataset=pm
3https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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TABLE I
COMPARISONS WITH OTHER SELF-SUPERVISED METHODS ON THE

ICHALLENGE-AMD DATASET (UNIT: %). BACKBONE: RESNET18

C. Comparisons With Others on the Ichallenge-AMD
Dataset

We compare our method with the state-of-the-art unsu-
pervised feature learning methods on the Ichallenge-AMD
dataset. The results are shown in Table I.

1) Experimental Settings: To have a fair comparison, all
models were trained on the ResNet18 backbone [57] with 5-
fold cross-validation. In the “Supervised” baseline, we mod-
ified the output channel of the last fully connected layer in
ResNet18 to 2 and the model was trained with cross-entropy
loss for binary classification.

We compare with other self-supervised methods, including
rotation prediction task [46], instance discrimination meth-
ods [49], [50], [61] and collaborative method [51]. We run
these methods with their released code on the Ichallenge-AMD
dataset. For [46], we modified the output channel of the
last fully connected layer of ResNet18 [57] to 4 and trained
the network with cross-entropy loss for four rotation type
predictions. To compare with instance discrimination based
methods [49], [50], [61], we used the same training strate-
gies and the only difference is the optimization method.
Wu et al. [49] proposed an instance discrimination method to
compute the similarity among instances. However, the memory
bank saves the memorized feature and is only updated per
epoch, which is inefficient and would cumber the training
process. Chen et al. [61] showed that contrastive learn-
ing can be beneficial to unsupervised feature learning and
Ye et al. [50] proposed a positive concentrated and negative
spread out method. To fairly compare with these unsupervised
methods, we trained all the models for 2000 epochs on the
Ichallenge-AMD dataset. For simplicity, we perform kNN on
all the unsupervised feature learning methods to evaluate the
final performance for classification.

2) Results: From Table I, we can see that our method excels
other state-of-the-art unsupervised feature learning methods by
around 4.2% on AUC, which demonstrates that our method
is very promising in the unsupervised feature learning. Com-
pared to [62] that relies on additional data, our method still
have a higher result (around 1.0% improvement). Notably,
without any annotation during training, our method achieves
comparable results with the supervised learning baseline, i.e.,
75.64% vs 77.19% on AUC and 87.09% vs 87.60% on
Accuracy. The results further demonstrated the effectiveness
of our self-supervised learned features.

TABLE II
RESULTS OBTAINED BY FIRST TRAINING A SELF-SUPERVISED MODEL

ON THE EYEPACS DATASET (SOURCE DATASET) AND THEN

EVALUATING ON THE ICHALLENGE-AMD DATASET (TARGET

DATASET) WITH THE KNN CLASSIFIER. Random Weights
DENOTES THE NETWORK WEIGHTS ARE RANDOMLY

INITIALIZED (UNIT: %).

TABLE III
RESULTS OBTAINED BY FIRST TRAINING A SELF-SUPERVISED MODEL

ON THE EYEPACS DATASET (SOURCE DATASET) AND THEN

EVALUATING ON THE ICHALLENGE-PM DATASET (TARGET

DATASET) WITH THE KNN CLASSIFIER. Random weights
DENOTES THE NETWORK WEIGHTS ARE RANDOMLY

INITIALIZED (UNIT: %)

D. Comparison on the Generalization Among Datasets

To show the generalization capability of our method,
we trained the self-supervised model on the EyePACS dataset
(source dataset) and evaluated on the Ichallenge-AMD and
Ichallenge-PM datasets (target datasets), respectively.

1) Experimental Settings: To adapt the method to the Eye-
PACS dataset, we first resized the images to 256 × 256 and
trained all the unsupervised methods for 150 epochs for a
fair comparison. We then froze model parameters and only
evaluated the model performance on the target datasets by the
kNN classifier (k = 100), respectively. The reported results are
the 5-fold cross-validation results on the target datasets, i.e.,
Ichallenge-AMD and Ichallenge-PM datasets. The results are
shown in Table II and Table III. “Random weights” denotes
that the network weights are randomly initialized. To repro-
duce [48], [50], [63] on this dataset, we run these methods with
the same network backbone (ResNet18), the same batch size
(b = 64), learning strategies (Adam optimizer with learning
rate 0.0001) and trained for the same epochs (150 epochs).
All the kNN classifiers are evaluated at the features from
the last fully connected layer. For the “Supervised” baseline,
we trained the model on the target datasets with image-level
labels, as procedures described in Section IV. B.

2) Results: From Table II and Table III, we can see that
“Random weights” achieves a random result (50% AUC) on
the Ichallenge-AMD dataset and a higher result (91.83%) on
the Ichallenge-PM dataset, which indicates that pathological
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TABLE IV
RESULTS OBTAINED BY FINE-TUNING WITH DIFFERENT PRETRAINED

MODELS ON THE ICHALLENGE-AMD DATASET (UNIT: %).

myopia classification is a much easier task. It is observed
that Moco v2 [63] achieves limited results on AMD and PM
classification tasks and this is due to that this method employs
heavy data augmentations that may not be suitable for the
fundus imaging. Moco v1 [48] gets a slightly higher result
on the Ichallenge-AMD dataset, but a worse result on the
Ichallenge-PM dataset. We can see that our method outper-
forms the other state-of-the-art method (i.e., Invariant [50])
AMD and PM classification tasks, respectively. These results
further demonstrated the effectiveness of our method in terms
of generalizing among datasets. Notably, we can see that
our self-supervised method can achieve higher performance
(around 1.1% improvement) than supervised baseline for PM
diagnosis. Compared to our results in Table I, we can see that
with more unlabeled fundus photos available, the performance
of our self-supervised method can be further increased.

E. Comparison With the ImageNet Pretrain

Our method provides an alternative approach to the Ima-
geNet pretrained model. To validate this argument, we train
the model on a large unlabeled fundus dataset, i.e., Eye-
PACS dataset, and fine-tune the model on the target dataset,
i.e., Ichallenge-AMD dataset. We compare this unsupervised
model with the ImageNet pretrained model and both models
have been fine-tuned on the target dataset in the same way.

Table IV shows the comparison of using the ImageNet pre-
trained model and the unsupervised pretrained model. We can
find that our method achieves a higher AUC (86.99%) than
the ImageNet pretrained model (85.5%). Note that in our
approach, we trained the model with 35,126 fundus images
without any annotations. However, in the ImageNet pretrained
model, 1.2 million natural images with labels are employed.
Compared to the ImageNet pretrained model, our method does
not have annotation cost and achieves a higher AUC, showing
the practical value of the proposed method.

F. Ablation Study

1) Importance of the Rotation Prediction Task: Our frame-
work collaboratively trains two pretext tasks and utilizes the
output for the multi-view instance discrimination task as the
final feature, i.e., f (d). The rotation prediction task serves as
an auxiliary task to provide rich structure features during fea-
ture training, and then the multi-view instance discrimination
task learns the transformation-invariant features that can be
employed in the retinal disease diagnosis. Then, we analyze
the importance of the auxiliary rotation prediction task in our
framework.

TABLE V
THE IMPORTANCE OF THE ROTATION PREDICTION TASK. λ INDICATES

THE WEIGHT OF THE ROTATION PREDICTION TASK, WHICH IS
DEFINED IN EQ. (4). THE MODELS ARE TRAINED ON

THE EYEPACS DATASET AND EVALUATED ON THE

ICHALLENGE-AMD DATASET. λ = �.� DENOTES

USING THE VANILLA ROTATION AUGMENTATION

WITHOUT THE ROTATION PREDICTION TASK

TABLE VI
THE IMPORTANCE OF THE ROTATION PREDICTION TASK. λ INDICATES

THE WEIGHT OF THE ROTATION PREDICTION TASK, WHICH IS
DEFINED IN EQ. (4). THE MODELS ARE TRAINED ON THE

ICHALLENGE-AMD DATASET BY 5-FOLD

CROSS-VALIDATION

2) Experimental Settings: We trained our framework with
different λ, where λ is the weight in Eq. (4) and indicates the
importance of the rotation prediction task. λ = 0.0 denotes
that the network is trained with only a multi-view instance
discrimination task. As λ increases, the more important of the
rotation prediction task in the network training. We trained
models with different λ and each model was trained for
150 epochs. We used the same learning rate (0.0001) and
batch size (b = 64). All the models were trained with the
same network backbone (ResNet18).

3) Results: The results are shown in Table V and Table VI.
When λ = 0.0, the network only includes the multi-view
instance discrimination task and the result is 74.43% on
AUC in Table V. Note that λ = 0.0 denotes that using
vanilla rotation augmentation without the rotation predict task.
We found that this setting achieves lower results than our
method (λ = 1.0). The comparison shows the effectiveness of
the learning to prediction task, which learns effective features
and cannot be replaced by vanilla rotation augmentation.

As λ increases, the classification performance improves
and the best performance is reached when λ = 1.0. When
λ continues increasing, the classification performance drops
apparently from 78.11% to 72.17%. From Table VI, we can
observe that with λ = 1.0, our method also achieves the
best result on the Ichallenge-AMD dataset by 5-fold cross-
validation. The results show that both the rotation prediction
task and multi-view instance-wise discrimination task are
useful in the training.

4) Effects of Each Individual Task: Our method is a collabo-
rative method that decouples features to the rotation-related
and rotation-invariant features by formulating two tasks.
Here, we analyze the effects of each task in Table VII.
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Fig. 3. The visualization of the features of three examples from the self-supervised models. “Random weights” denotes that the model weights
are randomly initialized, while “Without” and “With” Rotation refer to train the network without/with the rotation task. Grad-CAM [64] (blue heatmap)
highlights the discriminative regions (red regions), which correspond to high scores. We can see that our method captures more discriminative
regions; see the 6th column. Guided Grad-CAM [65] gives high-resolution discriminative visualizations and we can also find salient structures such
as vessels; see the last column. Best viewed in color.

TABLE VII
EFFECTS OF EACH INDIVIDUAL TASK ON THE

ICHALLENGE-AMD DATASET (UNIT: %)

TABLE VIII
RESULTS BY DIFFERENT AUGMENTATION STRATEGIES

ON THE ICHALLENGE-AMD DATASET (UNIT:%).

The experiments are conducted with 5-fold cross-validation on
the Ichallenge-AMD dataset. The experimental setting keeps
consistent with those in Table I.

As shown in Table VII, we can see that training the rotation
prediction task alone can achieve very limited performance
(52.26% AUC), while training with the instance discrimination
task can reach a higher result, i.e., 71.42% on AUC. This
phenomenon can also be found in [47], which indicated that
instance discrimination task, i.e., contrastive method, outper-
forms other the handcrafted pretext tasks. It is also observed
that through collaborative training of these two tasks, our
method can achieve a higher result for disease classification.

5) Analysis on the Data Augmentation: In this section,
we analyze the different strategies of data augmentation. Our
method first augments the input images with random scaling,

random left-right flip, random intensity modifications, etc.
On top of that, we further augment 4 rotated versions for each
image.

6) Feature Visualization: In this section, we visualize fea-
tures to verify whether the rotation prediction task can suc-
cessfully learn the salient/structure features on fundus images.
We have shown the results without and with the rotation
prediction task in Table V (see the 1st and 3rd rows). We
visualize the features from these two models in Figure 3,
and the showed feature is obtained from the 1st layer in the
last residual block. The “input” column is randomly selected
from the target dataset (Ichallenge-AMD dataset). “Random
weights” denotes that the model weights are randomly initial-
ized. We visualize the features through Grad-CAM [64] and
Guided Grad-CAM. Grad-CAM [64] (blue heatmap) localizes
discriminative regions and represents where the model has
to look to make the particular decision. Guided Grad-CAM
gives high-resolution discriminative visualizations, which is
obtained by pointwise multiplying the heatmap with guided
backpropagation [65]. The red region corresponds to a high
score (discriminative regions). From observations on Guided
Grad-CAM in Figure 3, we can see that compared with the
other two alternatives, “With Rotation” can present more clear
retinal structures, such as vessel structures. The visualization
indicates that the rotation prediction task can help the network
in learning salient features or obvious structures.

7) Visualizations of kNN Results: The final result is obtained
by running kNN on the features from the multi-view instance
discrimination task. Hence, we retrieve 5-nearest neighbors
from the training set for each test image based on the similarity
scores through the kNN algorithm. The label and the similarity
score are listed below each image. The higher score is,
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Fig. 4. The final result is obtained by a kNN, i.e., majority voting the k-nearest neighbors. Hence, we retrieve 5-nearest neighbors from the training
set for each test image based on the cosine similarity scores in the kNN algorithm. We also show dissimilar neighbors for reference. The label and
the similarity score are listed below each image. The higher score is, the more similar to the test image. We can see that the retrieved 5-nearest
neighbors have high visual similarity with the test sample, which can contribute to assign a correct class to the test image.

the more similar to the test image. We can see from Figure 4
that compared with 299th and 300th neighbors, the retrieved
images have high visual similarity with the test image, which
can help in assigning a correct class to the test image. It is
also observed that the majority vote of the 5-nearest neighbors
keeps the same with the label of the test sample.

V. DISCUSSION

Fundus photography is an important tool in assessing retinal
diseases, such as AMD classification [12], [23], [27], [66],
DR grading [9]–[11], [67] and PM classification [33], etc.
With the advances of deep learning techniques, automatic
retinal disease diagnosis, such as AMD and PM, has been well
studied in the research community. Although promising results
were obtained on these diagnosis tasks, these methods require
human annotations during the model development, which is
costly and expensive to obtain. Self-supervised/unsupervised
techniques that learn representation from data itself without
annotations provide solutions for this issue. In this work,
we present a rotation-oriented collaborative self-supervised
model for retinal disease diagnosis. Different from previous
self-supervised works [48], [50], [63], we formulate collab-
orative learning pretext tasks, i.e., rotation prediction and
multi-view instance discrimination, to decouple features to
both rotation-related and rotation-invariant features, which
help discover the discriminative structures of fundus images
and reveal the transformation-invariant representation for reti-
nal disease diagnosis, respectively. Our method is validated
on two public retinal disease datasets, i.e., Ichallenge-AMD
and Ichallenge-PM datasets, in which our method consis-
tently outperforms other self-supervised methods. With a large
amount of unlabeled data available, our method can surpass the
supervised baseline for PM and very close to the supervised
baseline for AMD.

Our method decouples features to rotation-related and
rotation-invariant features by collaboratively training two pre-
text tasks based on the core observations from the color
fundus images. The rotation prediction task learns the salient
structures and the instance discrimination task is a contrastive
learning method that learns transformation-invariant features.
Although our method achieves excellent performance, it comes
with limitations. There are some other pretexts, such as image
painting [42], relative position prediction [44], which may also
help decouple features to several types, but are less studied in
this work. In the future, we will investigate the advantages
of different pretext tasks, and study how to design a better
pretext that contributes to the representation feature learning.
Another potential research direction is to extend our method to
other medical image applications that have obvious orientation
characteristics, such as liver, kidney CT, and MR.

Another limitation is that our method only tackle the 2-class
classification problem, i.e., the retinal disease cases with obvi-
ous lesion patterns, e.g., AMD and PM. The developed rotation
prediction task can bring obvious changes when the image
rotates. However, DR grading is a challenging task and the
grading task requires to know the location and size of different
lesions, such as microaneurysms, haemorrhages, microvascular
anomalies. In this paper, the method is developed for 2-class
normal and abnormal classification, where abnormal case
contains obvious lesions. The exploration of the method on
more retinal disease diagnosis tasks, including segmentation,
grading, and detection would be our future work.

VI. CONCLUSION

This paper presents a novel self-supervised learning method
for retinal disease diagnosis. Our key idea is to learn the
visual features from the unlabeled images by developing the
rotation-oriented collaborative pretext tasks, i.e., a rotation
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prediction task, and a multi-view instance discrimination task.
The rotation prediction helps to discover the discriminative
structures of fundus images by learning the rotation-related
features, while the multi-view instance discrimination helps
to explore the rotation-invariant features for retinal disease
classification. These two features, i.e., rotation-related and
rotation-invariant features, are obtained by decoupling fea-
tures through collaboratively training two pretexts. Experimen-
tal results on two benchmark datasets demonstrate that our
method outperforms state-of-the-art self-supervised learning
methods. With a large amount of unlabeled data available,
our method can surpass the supervised baseline for PM and is
very close to the supervised baseline for AMD, showing the
potential benefit of our method in clinical practice.
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