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Abstract

Generalizing the medical image segmentation algorithms to
unseen domains is an important research topic for computer-
aided diagnosis and surgery. Most existing methods require
a fully labeled dataset in each source domain. Although (Liu
et al. 2021b) developed a semi-supervised domain general-
ized method, it still requires the domain labels. This paper
presents a novel confidence-aware cross pseudo supervision
algorithm for semi-supervised domain generalized medical
image segmentation. The main goal is to enhance the pseudo
label quality for unlabeled images from unknown distribu-
tions. To achieve it, we perform the Fourier transformation
to learn low-level statistic information across domains and
augment the images to incorporate cross-domain information.
With these augmentations as perturbations, we feed the input
to a confidence-aware cross pseudo supervision network to
measure the variance of pseudo labels and regularize the net-
work to learn with more confident pseudo labels. Our method
sets new records on public datasets, i.e., M&Ms and SCGM.
Notably, without using domain labels, our method surpasses
the prior art that even uses domain labels by 11.67% on Dice
on M&Ms dataset with 2% labeled data. Code is available at
https://github.com/XMed-Lab/EPL SemiDG.

Introduction
Medical image segmentation is one of the fundamental tasks
in computer-aided diagnosis and computer-aided surgery.
In recently years, researchers have developed many con-
volutional neural networks for medical image segmenta-
tion, such as U-Net (Ronneberger, Fischer, and Brox 2015),
DenseUNet (Li et al. 2018a), nnUNet (Isensee et al. 2021),
and HyperDenseNet (Dolz et al. 2018). Medical images are
usually collected from different clinical centers with dif-
ferent scanners (Li et al. 2020c; Puyol-Anton et al. 2021;
Wang et al. 2020). As a result, they may have apparent do-
main shifts due to variation in patient populations, scan-
ners, and scan acquisition settings; see examples in Figure 1.
However, the above methods generate inferior results when
testing on images from unseen domains; see results in Ta-
ble 1 and Table 2 in the experiments. Hence, it is crucial to
strengthen the model’s generalization ability over different
domain shifts.
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Figure 1: Some 2D slices of MRI from M&Ms dataset. The
first row is images from four different domains (A,B,C,D)
and the second row is the corresponding segmentation
masks. The red, blue, and green colors refer to the left ven-
tricle blood pool,the right ventricle blood pool, and the left
ventricular myocardium, respectively.

One naive solution to address the domain shifts is to ob-
tain and annotate as much data as possible. However, the an-
notation cost is quite expensive to the community. Another
solution is to train the model on the source domains and gen-
eralize it to the target domain with some information from
the target domain, namely domain adaptation (DA) (Bian
et al. 2020; Pomponio et al. 2020). For example, Pomponio
et al. (2020) developed cross-site MRI harmonization to en-
force the source and target domains to share similar image-
specific characteristics. Domain generalization (DG) is a
more strict setting, where the difference with DA is that the
model does not use any information from the target domain.
In this paper, we focus on this challenging but more practi-
cal problem, i.e., train the model on the source domains (A,
B, and C) and test it on an unseen domain (D).

Existing domain generalization methods have been devel-
oped for various medical image applications, such as cardiac
segmentation (Liu et al. 2020), skin lesion classification (Li
et al. 2020a), spinal cord gray matter segmentation (Li
et al. 2020a) and prostate MRI segmentation (Liu, Dou, and
Heng 2020). For example, Liu et al. (2020) proposed two
data augmentation methods: “Resolution Augmentaion” and
“Factor-based Augmentation” to generate more diverse data.
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Li et al. (2020a) proposed to learn a representative feature
space through variational encoding to capture the semantic-
consistent information among multiple domains. However,
the above methods require that each domain should have
fully-labeled datasets, and are not applicable if only partial
data in each domain is labeled. Recently, Liu et al. (2021b)
considered addressing this problem and presented a meta-
learning approach with disentanglement for semi-supervised
domain generalization. However, their method requires the
source domain labels, which may not easily be obtained in
clinical practice. Here, we consider a more practical setting
for semi-supervised domain-generalized medical image seg-
mentation: training data consists of labeled and unlabeled
images from three source domains without knowing domain
labels, and test data is from an unknown distribution.

One straightforward solution is to directly use semi-
supervised semantic segmentation methods (Chen et al.
2021; Lai et al. 2021; Lee, Kim, and Yoon 2021). For exam-
ple, Chen et al. (2021) introduced a cross pseudo supervision
method, where two segmentation networks are randomly
initialized and supervised separately by the corresponding
pseudo labels. The unlabeled images in semi-supervised se-
mantic segmentation usually are from the same distribution
as the labeled one; thus, the pseudo labels can be directly
used to refine another segmentation module. However, in our
problem, the unlabeled images are from an unknown distri-
bution, leading to a biased pseudo label.

To this end, we introduce a novel confidence-aware cross
pseudo supervision algorithm. The key idea is that two seg-
mentation networks that shared the same structure are ini-
tialized differently. Hence, we can encourage consistent out-
puts from two networks. For the unlabeled images, each seg-
mentation network can generate a pseudo label, which can
be used as an additional signal to supervise the other seg-
mentation network. To improve the quality of pseudo labels
for unlabeled images from unknown domains, we propose
to use Fourier transformation for unlabeled images, which
can not only help obtain the low-level statistic information
across different domains, but also augment the image sam-
ples by incorporating the cross-domain information. Then,
we develop the confidence-aware regularization to measure
the pseudo variances generated by the original image and
the image augmented by Fourier transformation. It helps im-
prove the quality of pseudo labels, thus facilitating the learn-
ing process of the whole framework.

This paper has the following contributions:

• We present a simple yet effective method for semi-
supervised domain-generalized medical image segmen-
tation. Our key idea is to enhance the quality of pseudo
labels for unlabeled images from unknown distributions.

• We introduce two innovative modules: Fourier-
transform-based data augmentation to augment the
samples with cross-domain information, and confidence-
aware cross pseudo supervision to measure the variances
of pseudo labels.

• Our method achieves the new state-of-the-art perfor-
mance on M&Ms and SCGM dataset. Notably, with-
out using domain labels, our method surpasses the prior

art that even uses domain labels by 11.67% on Dice on
M&Ms dataset with only 2% labeled data.

Related Work
Domain Generalization
Domain generalization (DG) trains the model with multi-
ple source domains and generalizes it to unseen target do-
mains. Existing DG methods can be categorized into three
classes: representation learning (Zhou et al. 2020), learning
strategy design (Yeo, Kar, and Zamir 2021), and data manip-
ulation (Tobin et al. 2017). Representation learning meth-
ods mainly follow the idea of domain adaptation by learn-
ing domain-invariant features or explicitly feature alignment
between domains. For example, Zhou et al. (2020) aligned
the marginal distribution of different source domains via op-
timal transport by minimizing the Wasserstein distance to
achieve domain-invariant feature space. Learning strategy
methods focus on exploiting the general learning strategy
to promote the generalization capability. For example, Yeo,
Kar, and Zamir (2021) used the ensemble learning method
to ensembling the middle domains into one strong prediction
with uncertainty as to their weight. Data manipulation aims
to manipulate the inputs to assist in learning general repre-
sentations. For example, Tobin et al. (2017) first used this
method to generate more training data from the simulated
environment for generalization in the real environment.

Recently, the Fourier transformation method has also
proven to be very effective for DG. Xu et al. (2021) proposed
a Fourier-transform-based framework for domain general-
ization by replacing the amplitude spectrum of a source im-
age with that of another image from a different source do-
main. Their method achieves a remarkable performance in
classification tasks. Liu et al. (2021a) also used the Fourier
transformation method in federated learning and proves that
it is a useful augmentation for medical image segmentation
under federated learning.

Unlike the above methods, we use the Fourier transforma-
tion as a data augmentation to get low-level statistic informa-
tion among different domains and incorporate cross-domain
information for unlabeled images. With these perturbations,
we can measure the confidences of pseudo labels, and then
enhance the model performance with reliable pseudo labels.

Semi-supervised Semantic Segmentation
Unlike the image classification task, manually labeling
pixel-wise annotations for the segmentation task is ex-
pensive and time-consuming. Existing methods for semi-
supervised segmentation can be broadly classified into two
categories: self-training (Lee et al. 2013) and consistency
learning (Tarvainen and Valpola 2017; Li et al. 2018b; Yu
et al. 2019; Li et al. 2020b). The self-training method mainly
uses the pseudo-label (Lee et al. 2013) method to improve
performance. This is initially developed for using unlabeled
data in classification tasks. Then, it is also applied for semi-
supervised segmentation (Feng et al. 2020; Ibrahim et al.
2020) recently. This method uses the pseudo segmentation
maps of unlabeled data acquired by the previously trained
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Figure 2: The overall architecture of the proposed confidence-aware cross-pseudo supervision network. B, C, and D are the
source domains and A is the target domain. Note that the network does not use domain labels (i.e., B, C, and D) during training.

segmentation model on labeled data to retrain the segmen-
tation model. The process can be iterated multiple times.
Consistency learning encourages the model to have a sim-
ilar output for the same input after different transformations.
It imposes the consistency constraint between the predic-
tions of different augmented images so that the decision
function lies in the low-density region. Mean teacher (Tar-
vainen and Valpola 2017) is a famous work of consis-
tency learning in the classification task. Many works (Kim,
Jang, and Park 2020; French et al. 2019) also use this in
semi-supervised segmentation tasks. Recently, many meth-
ods combined these two ideas to get better performance in
segmentation tasks. PseudoSeg (Zou et al. 2020) performed
both strong and weak augmentation on the same input im-
ages and used the weakly augmented image as the pseudo la-
bel. Cross pseudo supervision(CPS) (Chen et al. 2021) also
employed the pseudo-label method to expand the dataset and
used consistency learning to learn a more compact feature
encoding. Unlike these methods where unlabeled images are
from the same domain, our method involves unlabeled im-
ages from an out-of-domain distribution, so the pseudo label
generated by the network may not be reliable. Hence, we
develop two innovative modules to enhance the quality of
pseudo labels: one is Fourier-transform to augment cross-
domain information for a single input from the source do-
main; the other is to measure the confidence of pseudo labels
to get reliable supervision signals.

Methodology
Data Augmentation by Fourier Transformation
Figure 2 illustrates the overall architecture of our method.
During the training process, we randomly take an image X

from source domain as the input image without knowing the
domain label, and then perform the Fourier transformation
F to transfer the image to the frequency domain and ob-
tain an amplitude spectrum A and a phase image P , where
the amplitude spectrum contains low-level statistics while
the phase image includes high-level semantics of the origi-
nal signal. To improve the capability of domain generaliza-
tion, we randomly select another sample X ′ from the source
domain, perform the Fourier transformation, and obtain an-
other amplitude A′. Then, we augment the first image X by
incorporating the amplitude information of the second im-
age X ′ by:

Anew = (1− λ)A ∗ (1−M) + λA′ ∗M , (1)

where Anew is the newly generated phase image; λ is a pa-
rameter that used to adjust the ratio between the phase in-
formation of X and X ′; and M is a binary mask to con-
trol the spatial range of amplitude spectrum to be exchanged
and we set M as the central region of the amplitude spec-
trum that contains low-frequency information. After that, we
transform the merge sample from the frequency domain to
the image domain through F−1 to obtain the image sample
Z that augmented through Fourier transformation and incor-
porated the low-level information from another sample:

Z = F−1 (Anew,P) . (2)

Confidence-Aware Cross Pseudo Supervision
Next, we take both the original image X and the transformed
image Z into two parallel segmentation networks f(θ1) and
f(θ2), where these two networks have the same structure but
their weights are initialized differently. For each segmenta-
tion network, we obtain the predictions of the the original



image X and the transformed image Z by:
P 1
F = f(θ1)(Z),

P 1
O = f(θ1)(X),

P 2
F = f(θ2)(Z),

P 2
O = f(θ2)(X).

(3)

For the unsupervised part, since we do not have the su-
pervision signals for the unlabeled data, after obtaining the
predictions from different networks, we aim to adopt the pre-
diction from one network to supervise the prediction from
another network. This technique is proposed by (Chen et al.
2021) and named as the cross pseudo supervision. However,
in (Chen et al. 2021), the label and unlabeled data are from
the same domain with less variation, hence, the generated
pseudo labels usually have a high quality. In contrast, the
data in our task is from multiple domains and the large vari-
ance in the training samples from different domains may
lead to low-quality pseudo labels. To improve the label qual-
ity and reduce the influence of low-quality labels, in this
work, we present a confident-aware cross pseudo supervi-
sion mechanism.

Original

Inputs Predictions

FTT

Inputs Predictions

Figure 3: These images show that the predictions of the orig-
inal image and transformed image may have a large vari-
ance. Hence, we present the confidence-aware cross pseudo
supervision mechanism to reduce the weight of training loss
in such cases.

As shown in Figure 2, after obtaining the predictions P 1
O

and P 1
F from the original image and transformed image, we

compute the average value of P 1
O and P 1

F as the ensemble
prediction result P 1

E :

P 1
E = (P 1

O + P 1
F )/2, (4)

and we obtain the ensemble prediction result P 2
E of the sec-

ond network by:
P 2
E = (P 2

O + P 2
F )/2. (5)

To selectively use the pseudo labels as the supervisions and
reduce the low-quality labels, we first compute the variance
of the predictions of the original image and transformed im-
age to measure the quality of the pseudo labels. The variance
is computed as the KL-divergence of these two predictions:

V1 = E[ P 1
F log(

P 1
F

P 1
O

) ] ,

V2 = E[ P 2
F log(

P 2
F

P 2
O

) ] ,

(6)

where E compute the expectation value. If the difference be-
tween these two predictions is large, the computed variance
value is also large, which reflects these two prediction have
a relative low quality, and vice versa. Figure 3 shows some
visual examples, where the predictions between the original
image and the transformed image have a large variance.

After obtaining the variances of the prediction of these
two network, we formulate the confidence-aware loss func-
tion Lcacps = La + Lb to optimize the networks by using
the cross supervision signals:

La = E[ e−V1Lce(P
2
E , Y1) + V1 ],

Lb = E[ e−V2Lce(P
1
E , Y2) + V2 ],

(7)

where Y1 and Y2 are the one-hot vectors generated from the
probability maps P 1

E and P 2
E , and Lce denotes the cross-

entropy loss.
For the supervised part, we use dice loss as loss function.

We define the supervision loss as Ls.

Ls = E[LDice(P
1
O, G1) + LDice(P

2
O, G2)], (8)

where LDice is the dice loss function and G1(G2) is the
ground truth.

So, the whole training objective is written as:

L = Ls + β ∗ Lcacps, (9)

where β is the CACPS weight. Its goal is to put the two
losses into balance.

During the test procedure, we use the ensemble of two
models’ predictions as the final results.

Experimental Results
Implementation Details
We implemented the model on Pytorch1.8 and trained it
by using two NVidia 3090 GPUs with 377GB RAM on
the Ubuntu20.04 system. We implemented two segmenta-
tion networks by using DeepLabv3+ (Chen et al. 2017)
with ResNet50 (He et al. 2016) backbone, and adopted the
weights trained on ImageNet (Deng et al. 2009) for clas-
sification to initialize the parameters of the backbone net-
work and other layers were initialized by random noise.
For M&Ms dataset, we leveraged AdamW to optimize the
network with the weight decay of 0.1, the learning rate of
0.0001, and the batch size of 32. We trained the whole ar-
chitecture for 20 epochs and the images were cropped to
288 × 288. We set β in equation 9 as three to balance the
supervision loss and our proposed CACPS loss. We set λ in
equation 1 as 1. For SCGM dataset, we leveraged AdamW to
optimize the network with the weight decay of 0.1, the learn-
ing rate of 0.0001, and the batch size of eight. We trained
the whole architecture for 50 epochs and the images were
cropped to 288 × 288. We set β in equation 9 as 1.5 to bal-
ance the supervision loss and our proposed CACPS loss. We
set λ in equation 1 as 0.8. We also adopt the random rota-
tion, random scaling, random crop, and random flip as the
data augmentation strategies.



Table 1: Dice (%) results and the standard deviations on M&Ms dataset using 5% labeled data. For “SDNet+Aug”, ”Meta”, and
our method, the training data contains all unlabeled data and 5% of labeled data from the source domains. The other models are
trained by using 5% labeled data only. Bold numbers denote the best performance.

Method
Target A B C D Average

nnUNet (Isensee et al. 2021) 65.30±17 79.73±10 78.06±11 81.25±8.3 76.09±6.3
SDNet+Aug (Liu et al. 2020) 71.21±13 77.31±10 81.40±8.0 79.95±7.8 77.47±3.9
LDDG (Li et al. 2020a) 66.22±9.1 69.49±8.3 73.40±9.8 75.66±8.5 71.29±3.6
SAML (Liu, Dou, and Heng 2020) 67.11±10 76.35±7.9 77.43±8.3 78.64±5.8 74.88±4.6
Meta (Liu et al. 2021b) 72.40±12 80.30±9.1 82.51±6.6 83.77±5.1 79.75±4.4
Ours 83.3±5.83 85.04±6.49 87.14±4.74 87.38±4.49 85.72±1.67

Table 2: Dice (%) results and the standard deviations on M&Ms dataset using 2% labeled data. For “SDNet+Aug”, ”Meta”, and
our method, the training data contains all the unlabeled data and 2% of labeled data from source domains. The other models are
trained by using 2% labeled data only. Bold numbers denote the best performance.

Method
Target A B C D Average

nnUNet (Isensee et al. 2021) 52.87±19 64.63±17 72.97±14 73.27±11 65.94±8.3
SDNet+Aug (Liu et al. 2020) 54.48±18 67.81±14 76.46±12 74.35±11 68.28±8.6
LDDG (Li et al. 2020a) 59.47±12 56.16±14 68.21±11 68.56±10 63.16±5.4
SAML (Liu, Dou, and Heng 2020) 56.31±13 56.32±15 75.70±8.7 69.94±9.8 64.57±8.5
Meta (Liu et al. 2021b) 66.01±12 72.72±10 77.54±10 75.14±8.4 72.85±4.3
Ours 82.35±6.24 82.84±7.59 86.31±5.47 86.58±4.78 84.52±1.94

Table 3: Dice (%) results and the standard deviations on SCGM dataset using 20% labeled data. For “SDNet+Aug”, ”Meta”,
and our method, the training data contains all the unlabeled data and 20% of labeled data from source domains. The other
models are trained by using 20% labeled data only. Bold numbers denote the best performance.

Method
Target 1 2 3 4 Average

nnUNet (Isensee et al. 2021) 59.07±21 69.94±12 60.25±7.2 70.13±4.3 64.85±5.2
SDNet+Aug (Liu et al. 2020) 83.07±16 80.01±5.2 58.57±10 85.27±2.2 76.73±11
LDDG (Li et al. 2020a) 77.71±9.1 44.08±12 48.04±5.5 83.42±2.7 63.31±17
SAML (Liu, Dou, and Heng 2020) 78.71±25 75.58±12 54.36±7.6 85.36±2.8 73.50±12
Meta (Liu et al. 2021b) 87.45±6.3 81.05±5.2 61.85±7.3 87.96±2.1 79.58±11
Ours 87.13±1.4 87.31±2.02 78.75±9.44 91.73±1.28 86.23±4.69

Datasets and Evaluation Metrics
We adopt the multi-centre, multi-vendor & multi-disease
cardiac image segmentation (M&Ms) dataset (Campello
et al. 2021) to evaluate of our method. It contains 320 sub-
jects, which are scanned at six clinical centres in three dif-
ferent countries by using four different magnetic resonance
scanner vendors, i.e., Siemens, Philips, GE, and Canon,
and we consider the subjects scanned from different ven-
dors are from different domains (domains A,B,C,D). For
each subject, only the end-systole and end-diastole phases
are annotated. The resolutions of the voxels range from
0.85×0.85×10 mm to 1.45×1.45×9.9 mm. In total, there are
95 subjects in domain A, 125 subjects in domain B, 50 sub-
jects in domain C, and another 50 subjects in domain D.

We also adopt the spinal cord gray matter segmenta-
tion (SCGM) dataset(Prados et al. 2017) to evaluate of
our method. This dataset contains single channel Spinal
Cord MRI data with gray matter labels from four differ-

ent centers. Data is collected from four centers (UCL, Mon-
treal, Zurich, Vanderbilt) using three different MRI systems
(Philips Acheiva, Siemens Trio, Siemens Skyra) with in-
stitution specific acquisition parameters. So it has four do-
mains (domains A,B,C,D) in total. The voxel resolutions
range from 0.25 × 0.25 × 2.5 mm to 0.5 × 0.5 × 5 mm. Each
domain has 10 labeled subjects and 10 unlabelled subjects.

We evaluate the segmentation performance by using Dice
(%) score, which is defined as:

Dice (P,G) =
2× |P ∩G|
|P |+ |G|

, (10)

where P and G are the predicted segmentation result and
ground truth image, respectively. |P ∩G| denotes the over-
lapped region between P and G, while |P |+ |G| represents
the union region. In general, a better segmentation result has
a larger Dice.
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Figure 4: Visual comparison results on the M&Ms dataset.

Experiments on the M&Ms Dataset
Comparison with the State-of-the-art Methods. We
compare our method with the following state-of-the-art
methods:

(i) nnUNet (Isensee et al. 2021): is a self-adapting frame-
work based on 2D and 3D U-Nets(Ronneberger, Fischer, and
Brox 2015) for fast and effective segmentation. But it is not
designed for domain generalization.

(ii) SDNet+Aug (Liu et al. 2020): first generates diverse
data by rescaling the images to different resolutions within
a range spanning different scanner protocols, and then gen-
erates more diverse data by projecting the original samples
onto disentangled latent spaces and combining the learned
anatomy and modality factors from different domains.

(iii) LDDG (Li et al. 2020a): presents a method to learn
a representative feature space through variational encoding
with a novel linear-dependency regularization term to cap-
ture the shareable information among medical data, which is
collected from different domains. It is the latest state-of-the-
art model for domain-generalized medical image analysis in
a fully supervised setting.

(iv) SAML (Liu, Dou, and Heng 2020): is a gradient-
based meta-learning approach, which constrains the com-
pactness and smoothness properties of segmentation masks
across meta-train and meta-test sets in a fully supervised
manner.

(v) Meta (Liu et al. 2021b): is a semi-supervised meta-
learning framework, which models the domain shifts by
using the disentanglement and extracts robust anatomi-
cal features for predicting segmentation masks in a semi-
supervised manner by applying multiple constraints with
the gradient-based meta-learning approach. It is the latest
state-of-the-art model for domain-generalized medical im-
age analysis in a semi-supervised setting.

Results on the M&Ms dataset Table 1 and Table 2 re-
port the comparison results on the M&Ms dataset, where
our method achieves the best performance on all different

1

2

3

4
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Figure 5: Visual comparison results on the SCGM dataset.
We take the images from four different domains as the ex-
ample visualization.

settings. Specifically, our method shows the improvements
≈ 6% and ≈ 12% in terms of Dice scores on the settings of
5% labeled data and 2% labeled data, respectively, by com-
paring with the previous best method. Note that by compar-
ing with other methods, our method gives a significant im-
provement on the setting that we adopt the image samples
from domains B, C, D as the training data, and evaluate the
trained model on the domain A. This is because the image
samples in domain A are less similar to other domain, as also
shown in Figure 1, and our method has a great generalization
capability.

Figure 4 shows more visual results by comparing with the
previous best method, i.e., Meta (Liu et al. 2021b). From
the results, we can see that our method generates the re-
sults that are more consistent with the ground truth images,
while Meta (Liu et al. 2021b) tend to mis-segment some un-
obvious regions of the input images.

Results on the SCGM dataset Table 3 reports the com-
parison results on the SCGM dataset, where our method
shows the improvement ≈ 7% in terms of Dice score on the
setting of 20% labeled data, by comparing with the previ-
ous best method. Figure 5 shows the visual results produced
by our method in different domains, where we can see that
our method successfully generates the prediction results that
are consistent with the ground truth images on all the four
domains.
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Figure 6: We compare the pseudo labels generated by
CPS (Chen et al. 2021) and by our method, where our
method can generate the pseudo labels that are more con-
sistent with the ground-truth images.

Table 4: Ablation Study on the M&Ms dataset by using 2%
labeled data. We consider domain A as the target domain
and others as the source domain.

CPS Fourier CACPS Dice(%)
✓ 80.46±4.67
✓ ✓ 81.47±4.66
✓ ✓ ✓ 82.61±4.15

Ablation Study We perform an ablation study to evaluate
the effectiveness of each component of our proposed method
on the M&Ms dataset. First, we build our first baseline by
using CPS (Chen et al. 2021) designed for semi-supervised
learning to perform segmentation task on different domains.
Then, we construct the second model by further using the
Fourier transformation to perform data augmentation and
further use CPS to train the network. Third, we consider
the confidence-aware cross pseudo supervision (CACPS) in-
stead of simple CPS to optimize the network, which is the
full pipeline of our proposed method. Moreover, we visu-
ally compare the pseudo labels generated by CPS and our
method in Figure 6, where we can see that our pseudo labels
are more consistent with the ground truth images. Table 4
reports the results, where we can see that each component
gives a clear improvement on the results.

Conclusion
This paper presents a semi-supervised domain generaliza-
tion method for medical images by formulating two novel
techniques. One is the Fourier-transform-based data aug-
mentation and another is the confidence-aware cross pseudo
supervision. The Fourier-transform-based data augmenta-
tion helps to obtain the low-level statistic information from
different domains, which augments the image samples by in-
corporating the cross-domain information. The confidence-
aware cross pseudo supervision algorithm measures the vari-
ance between the original image sample and the image sam-
ple augmented by Fourier transformation, which helps to
improves the quality of pseudo labels, thus facilitating the
learning process of the whole framework. Finally, we evalu-

ate our method on two public benchmark datasets, compare
our method with various methods, and show its superiority
over the other state-of-the-art methods. In the future, we will
jointly leverage the semi-supervised and weakly-supervised
algorithms to improve the performance of medical image
segmentation by exploring the knowledge of unlabeled data
and the data with weaker labels, such as bounding boxes.
Moreover, we will explore our framework for more medical
image segmentation tasks and integrate the network into the
artificial intelligent systems on medical diagnostics.
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E.; Dávid, G.; De Leener, B.; et al. 2017. Spinal cord grey
matter segmentation challenge. Neuroimage, 152: 312–329.
Puyol-Anton, E.; Ruijsink, B.; Piechnik, S. K.; Neubauer, S.;
Petersen, S. E.; Razavi, R.; and King, A. P. 2021. Fairness in
Cardiac MR Image Analysis: An Investigation of Bias Due
to Data Imbalance in Deep Learning Based Segmentation.
arXiv preprint arXiv:2106.12387.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Tarvainen, A.; and Valpola, H. 2017. Mean teachers are
better role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. arXiv preprint
arXiv:1703.01780.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 23–30. IEEE.
Wang, J.; Zhou, S.; Fang, C.; Wang, L.; and Wang, J. 2020.
Meta Corrupted Pixels Mining for Medical Image Seg-
mentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, 335–345.
Springer.
Xu, Q.; Zhang, R.; Zhang, Y.; Wang, Y.; and Tian, Q. 2021.
A Fourier-based Framework for Domain Generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 14383–14392.
Yeo, T.; Kar, O. F.; and Zamir, A. 2021. Robust-
ness via Cross-Domain Ensembles. arXiv preprint
arXiv:2103.10919.
Yu, L.; Wang, S.; Li, X.; Fu, C.-W.; and Heng, P.-A.
2019. Uncertainty-aware self-ensembling model for semi-
supervised 3D left atrium segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, 605–613. Springer.
Zhou, F.; Jiang, Z.; Shui, C.; Wang, B.; and Chaib-draa, B.
2020. Domain generalization with optimal transport and
metric learning. arXiv preprint arXiv:2007.10573.



Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.-L.; Bian, X.;
Huang, J.-B.; and Pfister, T. 2020. Pseudoseg: Designing
pseudo labels for semantic segmentation. arXiv preprint
arXiv:2010.09713.


