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Abstract. Segmentation of 3D knee MR images is important for the
assessment of osteoarthritis. Like other medical data, the volume-wise
labeling of knee MR images is expertise-demanded and time-consuming;
hence semi-supervised learning (SSL), particularly barely-supervised
learning, is highly desirable for training with insufficient labeled data. We
observed that the class imbalance problem is severe in the knee MR images
as the cartilages only occupy 6% of foreground volumes, and the situation
becomes worse without sufficient labeled data. To address the above prob-
lem, we present a novel framework for barely-supervised knee segmenta-
tion with noisy and imbalanced labels. Our framework leverages label dis-
tribution to encourage the network to put more effort into learning carti-
lage parts. Specifically, we utilize 1) label quantity distribution for mod-
ifying the objective loss function to a class-aware weighted form and 2)
label position distribution for constructing a cropping probability mask to
crop more sub-volumes in cartilage areas from both labeled and unlabeled
inputs. In addition, we design dual uncertainty-aware sampling supervi-
sion to enhance the supervision of low-confident categories for efficient
unsupervised learning. Experiments show that our proposed framework
brings significant improvements by incorporating the unlabeled data and
alleviating the problem of class imbalance. More importantly, our method
outperforms the state-of-the-art SSL methods, demonstrating the poten-
tial of our framework for the more challenging SSL setting. Our code is
available at https://github.com/xmed-lab/CLD-Semi.

Keywords: Semi-supervised learning · Class imbalance · Knee
segmentation · MRI image

1 Introduction

The most common form of arthritis in the knee is osteoarthritis, a degenerative,
“wear-and-tear” type of arthritis that occurs most often in people 50 years of age
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Fig. 1. (a) Quantity distribution of all background (labeled as 0) and foreground cate-
gories (labeled as 1, 2, 3, 4). (b) Quantity distribution of foreground categories includ-
ing distal femur, femoral cartilage, tibia, and tibial cartilage, which are labeled as 1,
2, 3, 4, respectively. (c) Visualization of segmentation ground truth (left and middle)
and reconstructed mesh (right). Red, green, blue, yellow color refer to the above 4
categories, respectively. (Color figure online)

and older. Magnetic resonance imaging (MRI) is a widely used medical imaging
technology [9]. It is ideally suited for the assessment of osteoarthritis because it
can clearly show soft-tissue contrast without ionizing radiation. For an objective
and quantitative analysis, high-precision segmentation of cartilages from MR
images is significant. With the development of deep learning technology, auto-
matic knee segmentation has drawn more and more attention [1,13,17]. However,
different from natural images, the segmentation of knee MR images suffers from
a class imbalance problem. As shown in Fig. 1a–b, the foreground volumes (car-
tilages and hard tissues) occupy 16% of the entire image, and the cartilages
only occupy 6% of foreground volumes, which implies a severe class imbalance
between foreground and background and between cartilage and hard tissue.

Though deep learning methods can achieve better performance than mor-
phological analysis, they require massive pixel-wise annotation to be trained in
full supervision. In the medical field, sufficient labeled data is more difficult to
obtain than natural images as manual annotation is expertise-demanded and
time-consuming. Therefore, semi-supervised learning was introduced to solve
this problem by utilizing only a small amount of labeled data and an arbitrary
amount of unlabeled data for training. Recently, many semi-supervised learning
(SSL) methods were proposed to solve insufficient labeled data problems on the
natural images [3,4,12,18,19] and medical images [7,10,11,15,20,22]. In particu-
lar, [2,23] are proposed to generate pseudo labels for unlabeled data with model
parameter fixed for the next round training. [18,22] proposed to guide the model
to be invariant to random noises in the input domain. [3,5,14,15] proposed to
design several models or decoders and use consistency regularization for unsu-
pervised learning. [15,22] leveraged the uncertainty information to enable the
framework to gradually learn from meaningful and reliable targets. Although
appealing results have been achieved by these SSL methods, they cannot handle
the class imbalance problem with barely labeled data. Recent work AEL (Adap-
tive Equalization Learning [6]) proposed adaptive augmentation, re-weighting,
and sampling strategies to solve the class imbalance for natural images in SSL.
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However, Table 1 shows the improvement of AEL is limited since the proposed
strategies are not suitable for medical data.

In this work, we aim to address the problem of class imbalance in semi-
supervised knee segmentation with barely labeled data. We regard CPS (Cross
Pseudo Supervision [3]) as the baseline framework as it achieves the state-of-the-
art performance on the SSL segmentation task for natural images. We further
present a novel SSL framework named CLD (Calibrating Label Distribution) by
leveraging the label distribution and uncertainty information to guide the model
to put more effort into the learning of cartilage parts and enhance the learning of
low-confident categories. Specifically, we firstly modify the objective loss function
to a class-aware weighted form by utilizing the quantity distribution of labels.
As shown in Fig. 1c, the soft cartilages are much thinner than hard tissues and
occupy fewer volumes along the z-axis (from up to down), resulting in the carti-
lages being less cropped in random cropping augmentation, which further exac-
erbates the class imbalance problem. Therefore, we propose probability-aware
random cropping to crop more in cartilage areas of both labeled and unlabeled
input images by incorporating the position distribution of labels. Furthermore,
we observe that the output confidence of cartilage volumes is lower than hard
tissues due to the class imbalance. Hence we design dual uncertainty-aware sam-
pling supervision to enhance the supervision of low-confident categories (i.e.,
cartilages). Concretely, instead of using a constant sampling rate, We maintain
an uncertainty bank for each of the two models to estimate the sampling rate
for each category.

To summarize, the main contributions of this work include 1) we are the
first to address the class imbalance problem in barely-supervised knee segmen-
tation; 2) we propose a novel SSL framework CLD for knee segmentation, consist-
ing of class-aware weighted loss, probability-aware random cropping, and dual
uncertainty-aware sampling supervision; 3) we conduct extensive experiments
and ablation studies to validate the effectiveness of the proposed methods on a
clinical knee segmentation dataset.

2 Method

As illustrated in Fig. 2, our framework consists of two models with the same
architecture but different initial parameters. We modify the objective loss func-
tion to a class-aware weighted form and replace the random cropping with
probability-aware random cropping to address the problem of class imbalance. In
addition, we design dual uncertainty-aware sampling supervision to enhance the
supervision on low-confident categories by maintaining two uncertainty banks
for two models.

2.1 Cross Supervision for Semi-supervised Segmentation

In this work, we study the task of semi-supervised segmentation for knee MR
imaging scans. We follow CPS [3] to firstly initialize two models with the same
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Fig. 2. Overview of the proposed semi-supervised segmentation framework. We modify
the original supervised/unsupervised loss to a weighted form by leveraging the quantity
distribution of segmentation labels. We replace the random cropping with a probability-
aware cropping strategy by incorporating the position distribution (right) of cartilages.
In addition, we design dual uncertainty-aware sampling to enhance the supervision on
low-confident categories for efficient unsupervised learning.

architecture but different parameters θA and θB, respectively. To formulate, let
the labeled set be DL =

{
(xi, yi)

}NL

i=1
with NL data and the unlabeled set be

DU = {xi}NU
i=1 with NU data, where xi ∈ R

H×W×D is the input volume and
yi ∈ {0, 1, 2, 3, 4}H×W×D is the ground-truth annotation (4 foreground cate-
gories). Denote the output probability of the segmentation model as pθ

i = f(xi; θ)
and the prediction (pseudo label) as ŷθ

i = argmax(pθ
i ), where θ indicates the

model parameters. The goal of our semi-supervised segmentation framework is
to minimize the following objective function:

L =
NL∑

i=1

[
Ls(pθA

i , yi)+Ls(pθB
i , yi)

]
+λ

NL+NU∑

i=1

[
Lu(pθA

i , ŷθB
i )+Lu(pθB

i , ŷθA
i )

]
, (1)

where Ls is the supervised loss function to supervise the output of labeled data,
and Lu is the unsupervised loss function to measure the prediction consistency
of two models by taking the same input volume xi. Note that both labeled and
unlabeled data are used to compute the unsupervised loss. In addition, λ is the
weighting coefficient, ramping up from 0 to λmax for controlling the trade-off
between the supervised loss and the unsupervised loss.

In practice, we employ V-Net [16] as the backbone network and regard
CPS [3] as the SSL baseline framework. We follow [22] to remove the short resid-
ual connection in each convolution block. In the baseline, we use cross-entropy
(CE) loss as the unsupervised loss, and a joint cross-entropy loss and soft dice
loss as the supervised loss function, which are given as follows:

Lu(x, y) = LCE(x, y), Ls(x, y) =
1
2

[
LCE(x, y) + LDice(x, y)

]
. (2)

In addition, we empirically choose λmax as 0.1 and use the epoch-dependent
Gaussian ramp-up function λ(t) = λmax ∗ e−5(1− t

tmax )
2

, where t is the current
training epoch and tmax is the total number of training epochs.
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2.2 Calibrating Label Distribution (CLD)

To solve the class imbalance problem in barely-supervised knee segmentation,
we propose a novel framework CLD, by leveraging the label distribution of soft
cartilages and hard tissues for addressing the class imbalance problem.

Class-Aware Weighted Loss. We firstly modify the supervised and unsuper-
vised loss function to a weighted form by introducing class-aware weights. We
utilize the category distribution of labeled data by counting the number of vox-
els for each category, denoted as Ni, i = 0, . . . , C, where C is the number of
foreground categories, and N0 indicates the number of background voxels. We
construct the weighting coefficient wi for ith category as follows

wi =
(max{nj}C

j=0

ni

)α

, ni =
Ni

∑C
j=0 Nj

, i = 0, . . . , C. (3)

The exponential term α is empirically set to 1
3 in the experiments. For cross-

entropy loss calculation, the loss of each voxel will be multiplied by a weighting
coefficient depending on using true label (Ls) or pseudo label (Lu). The soft dice
loss will be calculated on the input image for each category separately and then
multiplied by the weighting coefficient.

Probability-Aware Random Cropping. As mentioned in Sect. 1, the soft car-
tilages are thinner, and we propose probability-aware random cropping replacing
random cropping to crop more sub-volumes in cartilage areas from both labeled
and unlabeled inputs. Since the distributions of foreground categories along x-
axis and y-axis are quite similar, we only consider the cropping probabilities
along z-axis (from up to down). Suppose that the total length is D and the
cropping size is D′ along z-axis. To formulate, for each labeled image xi, we cal-
culate a vector vi with the length of D, where the jth value of vi is 1 only when
there are more than k1 voxels labeled as soft cartilages in the cropping window
centered at jth voxel along z-axis. Then we sum all vi to obtain v =

∑NL

i=1 vi and
increase the cropping probability by a factor of β at jth position if jth value of
v is greater than k2. In the experiments, we empirically choose both k1 and k2
as 1, and β as 2.0.

Dual Uncertainty-Aware Sampling Supervision. To alleviate the uncer-
tainty imbalance brought by class imbalance and limited labeled data, we adopt
the sampling strategy to sample fewer voxels of low-uncertainty categories and
more voxels of high-uncertainty categories for supervision. Instead of using a
constant sampling rate, maintain an uncertainty bank for each category as
U ∈ R

C for estimating the sampling rate on-the-fly. Assume that the output
is p ∈ R

C×WHD and the one-hot label is y ∈ R
C×WHD, then the uncertainty of

ith category is given by

ui = 1 −
∑

yi · pi∑
yi

, (4)

where pi, yi ∈ R
WHD are ith values in the first dimension, indicating the pre-

diction and label value for ith category. Due to the class-imbalance problem, the
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cropped sub-volumes sometimes cannot contain all categories. In practice, we
accumulate the values of

∑
yi · pi and

∑
yi for k3 times to obtain a more stable

uncertainty estimation:

ui = 1 −
∑k3

j=1

∑
yj

i · pj
i

∑k3
j=1

∑
yj

i

, (5)

where pj , yj is the output and label of jth input sub-volume. In addition, the
uncertainty values are initialized randomly and updated as an exponential mov-
ing average (EMA) with a momentum γ, i.e., ut

i = γut−1
i +(1− γ)ut′

i . Note that
the uncertainty values are only measured from the output of labeled data, and
we maintain two uncertainty banks for two models respectively. Then we define

the sampling rate for each category as si =
(

ui

maxj uj

)1/2

. Taking the supervi-

sion on model A as an example. Let pseudo labels from model B be ŷθB , and
the uncertainty bank and sampling rates of model A be UA = {uA

1 , . . . , uA
C}

and SA = {sA
1 , . . . , sA

C}, respectively. For those voxels predicted as ith category
in ŷθB , we randomly sample a subset of voxels with the sampling rate sA

i and
construct the binary sampling mask as mA

i ∈ {0, 1}WHD. Compute all mA
i and

denote the union sampling mask as mA =
⋃

mA
i . Therefore, only the voxels with

the value of 1 in mA (i.e., sampled voxels) will contribute to the unsupervised
loss. k3 and γ are empirically set to 8 and 0.999 in the experiments.

3 Experiments

We conducted comprehensive experiments to validate the effectiveness of our
proposed methods on a collected knee segmentation dataset. In addition, we
conduct extensive ablation experiments to analyze the working mechanism of
different proposed modules in the framework.

Dataset and Pre-processing. We collected a knee segmentation dataset with
512 MR imaging scans, containing 412 for training, 50 for validation, and 50
for testing. The size of each imaging scan is 384 × 384× 160. All the image data
are publicly available from Osteoarthritis Initiative (OAI1). Ground-truth seg-
mentation of the data were done by orthopaedic surgeons from local institution.
There are 4 foreground categories, including distal femur (DF), femoral cartilage
(FC), tibia (Ti), and tibial cartilage (TC), which have extremely imbalanced dis-
tribution. Some example slices and the category quantity distribution are shown
in Fig. 1. We follow the previous work [22] to normalized the input scans as zero
mean and unit variance before being fed into the network.

Implementation. We implement the proposed framework with PyTorch, using
a single NVIDIA RTX 3090 GPU. The network parameters are optimized with
SGD with a momentum of 0.9 and an initial learning rate of 0.01. The learning
rate is divided by 0.0011/300 ≈ 0.9772 per epoch. Totally 300 epochs are trained
1 https://oai.nih.gov.

https://oai.nih.gov
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Table 1. Comparison between our method with previous methods. DF: distal femur,
FC: femoral cartilage, Ti: tibia, and TC: tibial cartilage.

Method # scans used Dice [%]↑/ASD [voxel]↓
Labeled Unlabeled Avg. DF FC Ti TC

V-Net [16] 412 0 90.5/3.4 97.2/7.4 86.4/1.2 97.3/3.7 81.1/1.3
4 0 25.9/– 68.3/35.1 69.9/13.4 0.0/– 0.0/–

UA-MT [22] 4 408 32.0/– 67.7/51.5 60.1/24.2 0.0/– 0.0/–
URPC [15] 4 408 76.6/26.2 88.7/26.9 74.4/5.2 82.6/46.7 60.5/25.9
CPS [3] 4 408 83.4/16.3 93.1/17.2 81.1/2.4 91.5/24.5 67.7/20.9
CPS+AEL [3,6] 4 408 83.6/15.1 93.2/16.8 81.3/2.7 90.8/27.3 69.2/13.5

CLD (ours) 4 408 87.2/8.8 93.8/14.9 83.7/1.1 92.8/17.9 78.6/1.2

as the network has well converged. The batch size is 4, consisting of 2 labeled
data and 2 unlabeled data. We choose 160 × 160× 48 as the cropping size of
sub-volumes in the training and testing. In the inference (testing) stage, final
segmentation results are obtained using a sliding window strategy [22] with a
stride size of 64 × 64× 16, where the outputs of overlapped volumes are averaged
over all windows’ outputs. Standard data augmentation techniques [21,22] are
used one-the-fly to avoid overfitting, including randomly flipping, and rotating
with 90, 180 and 270 ◦C along the axial plane.

Evaluation Metrics and Results. We evaluate the prediction of the network
with two metrics, including Dice and the average surface distance (ASD). We
use 4 scans (1%) as labeled data and the remaining 408 scans as unlabeled data.
In Table 1, we present the segmentation performance of different methods on
the testing set. The first two rows show the results of V-Net [16] trained with
the full training set and with only 1% labeled data, revealing that the lack of
efficient labels makes the class imbalance problem worse, and brings a dramatic
performance drop. By utilizing the unlabeled data, our proposed SSL framework
significantly improves the performance in all categories. To validate our network
backbone design (V-Net [16]), we also conduct the experiments with nnUNet [8],
and the final testing Dice score is 90.8% (Avg.) with the full labeled set (412
data) for training, which shows that we can regard the revised V-Net [16] as a
standard backbone model.

Furthermore, we implemented several state-of-the-art SSL segmentation
methods for comparison, including UA-MT [22], URPC [15], and CPS [3] in
Table 1. Although utilizing the unlabeled data, the Dice scores of two cartilages
are still much worse than hard tissues. In addition, we adopted the learning
strategies in AEL [6] to CPS, but the improvement is still limited. Compared
with the baseline model (CPS), our proposed learning strategies further improve
the performance by 3.8% Dice on average. The results also show that the pro-
posed framework alleviates the class imbalance problem and improves the per-
formance by 2.6% and 10.9% Dice for two cartilages, respectively. Visual results
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Fig. 3. Comparison of segmentation results with CPS [3]. As the cartilages (colored in
green and yellow) are much thinner and tightly connected to hard tissues, CPS does
not perform well in the junction areas of cartilages and hard tissues, while ours can.
(Color figure online)

Table 2. Ablative study on different proposed modules. WL: class-aware weighted loss
function, DUS: dual uncertainty-aware sampling supervision, and PRC: probability-
aware random cropping.

WL DUS PRC Dice [%]↑/ASD [voxel]↓
Avg. DF FC Ti TC

83.4/16.3 93.1/17.2 81.1/2.4 91.5/24.5 67.7/20.9√
84.8/14.4 90.8/23.9 82.2/1.5 89.2/31.0 77.0/1.1√ √
86.1/9.7 92.5/11.4 82.5/1.3 91.0/24.9 77.1/1.0√ √ √
87.2/8.8 93.8/14.9 83.7/1.1 92.8/17.9 78.6/1.2

in Fig. 3 show our method can perform better in the junction areas of cartilages
and hard tissues.

Analysis of Our Methods. To validate the effectiveness of the proposed learn-
ing strategies, including class-aware weighted loss (WL), dual uncertainty-aware
sampling supervision (DUS), and probability-aware random cropping (PRC), we
conduct ablative experiments, as shown in Table 2. We can see that WL improves
the Dice scores of two cartilages 1.1% and 9.3% but brings a 2.3% performance
drop for hard tissues, which means WL can improve the learning of cartilages,
but in turn negatively affect the learning of hard tissues. DUS maintains the
improvements on cartilages and alleviates the performance drop of hard tissues.
PRC can further boost the performance of both soft cartilages and hard tissues.
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4 Conclusion

In this work, we propose a novel semi-supervised segmentation framework CLD
by introducing class-aware weighted loss (WL), probability-aware random crop-
ping (PRC), and dual uncertainty-aware sampling supervision (DUS) to enhance
the learning and supervision in the areas of cartilages in knee MR images. Among
them, WL and DUS are general solutions for solving the class imbalance problem
in semi-supervised segmentation tasks. PRC is the specific design for the knee
dataset, where the cartilages are extremely thin and have a smaller cropping
probability along the z-axis than hard tissues. Extensive experiments show that
the proposed framework brings significant improvements over the baseline and
outperforms previous SSL methods by a considerable margin.
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