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Multi-modal image registration is an essential step for many medical image analysis applications. Recent
advances in multi-modal image registration rely on image-to-image translation to achieve good perfor-
mance. However, the performance is still limited owing to the poor use of complementary regularization
between image registration and translation, which is able to simultaneously enhance both parts’ accu-
racy. To this end, we propose CoCycleReg, a novel method that formulates image registration and trans-
lation in a Collaborative Cycle-consistency manner. Instead of dividing into two discrete stages, we unify
the image registration and translation via cycle-consistency in an end-to-end training process, such that
each part can benefit from the other one. To ensure the deformation fields’ reversibility in the cycle, we
extensively introduce a novel dual-head registration network, consisting of one single backbone to
extract the features and two heads to respectively predict the deformation fields. The experiments on
T1-T2(MRI) and CT-MRI datasets validate that the proposed CoCycleReg surpasses the other state-of-
the-art conventional and deep learning approaches comprehensively considering the speed, accuracy,
and regularity of deformation fields. In the ablation analysis, a method that sets the cycle-consistency
Corresponding authors at: Department of Computer Science at School of Informatics, Xiamen
University, Xiamen 361005, Chinaconstraints of registration and image-to-image translation separately
is compared, and the results demonstrate the effectiveness of collaborative cycle-consistency. In addition,
the improvement of image-to-image translation is also verified in further analysis. The code is publicly
available at https://github.com/DopamineLcy/cocycle-reg/.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Medical images from different modalities such as Computed
Tomography(CT) and Magnetic Resonance Imaging(MRI) provide
complementary information, which can significantly aid in the
early detection of tumors or other diseases and help improve diag-
nostic accuracy [1,2]. However, multi-modal images usually have
inevitable misalignment issues due to patient motion and varia-
tions in anatomical structures. Rigid registration can perform well
in structures that are not susceptible to elastic changes (e.g., bone).
But for soft tissues, many factors, including tissue abnormalities,
respiratory movements, and muscle contractions, can cause elastic
deformation. For this situation, deformable registration is more
suitable and accurate. Deformable image registration has been a
fundamental component of many medical image analysis applica-
tions, such as monitoring diseases’ progression and quantifying
treatment mechanisms’ effectiveness [3–6]. The goal of deformable
image registration is to achieve a high speed, high accuracy and
guarantee deformation fields to be realistic.

Previous works on multi-modal image registration mainly
include conventional iterative optimization-based methods [7–
10], metric-based deep learning methods [11,12] and image-to-
image translation-based deep learning methods [13–15].

The conventional iterative optimization-based methods esti-
mate the deformation fields by optimizing certain objective func-
tions like Mutual Information (MI) [7,9,10] and Modality
Independent Neighbourhood Descriptor (MIND) [8]. The most sev-
ere limitation of this sort of methods is that the optimization pro-
cess is very computationally expensive and time-consuming.
Besides the computational disadvantage, designing accurate met-
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rics to evaluate the similarity of images from different modalities is
challenging.

With the advances of deep neural networks, researchers began
to investigate the deep learning-based methods for mono-modal
image registration [16,17]. The deep learning methods optimize a
spatial transform network (STN) [18] by comparing the warped
image and the target one using similarity metrics like Mean
Squared Error (MSE) and Normalized Cross-Correlation (NCC). Fur-
thermore, the mono-modal image registration methods have been
extended to multi-modal image registration and these extended
methods can be broadly classified into metric-based deep learning
methods [11,12] and image-to-image translation-based deep
learning methods [13–15]. The common idea of the metric-based
methods is to find a metric to evaluate the similarity of images
from different modalities and solve multi-modal registration prob-
lem based on mono-modal registration methods. To achieve this,
MI, Structural Similarity (SSIM) [19] and MIND [8] are utilized.
However, statistic metrics like MI and SSIM introduce inaccuracy
while the upper limit of handcrafted metrics like MIND is obvious
since it’s arguably impossible to design a metric to suit all kinds of
modalities. Instead of directly measuring the similarity of images
from different modalities, image-to-image translation-based deep
learning methods translate the moving images to the modality of
target images and use simple mono-modal metrics like MSE to
measure the similarity [13,14]. This kind of methods discards com-
plicated handcrafted metrics completely and the performance ben-
efits from the development of image-to-image translation.

In recent years, cycle-consistency has become prevalent since
Zhu et al. proposed the cycle-consistency of image-to-image trans-
lation and made a great success in CycleGAN [20]. For the image
registration task, the cycle-consistency is used to improve the
invertibility of image registration [21]. More details about related
cycle-consistency can be found in 2.3. Besides mentioned in the
last paragraph that image-to-image translation-based deep learn-
ing methods benefit a lot from the image translation, the
translation-registration collaboration is also a key point. However,
to the best of our knowledge, the complementary regularization
between image registration and translation is still underexplored.
Inspired by cycle-consistency and the integrated translation and
registration framework in [14], we propose CoCycleReg, delving
into the cycle-consistency of the integrated translation and regis-
tration framework to improve the performance of multi-modal
image registration.

In the present work, our main contributions are:

� we introduce a collaborative cycle-consistency framework for
multi-modal image registration, where the image registration
and translation part can regularize each other during the train-
ing process. The regularization enhances the accuracy and reg-
ularity of image registration and the consistency of geometry
shape during image-to-image translation;

� we propose dual-head deformation fields generating network to
generate bi-directional deformation fields with a single net-
work. Compared to inverse the deformation field of one direc-
tion directly to obtain the other one, the proposed dual-head
network generates bi-directional deformation fields with better
invertibility. In the meantime, training two networks to gener-
ate bi-directional deformation fields is avoided, which reduces
the network parameters and makes training easier;

� the entire framework is end-to-end and image-to-image trans-
lation in 3D volumes is achieved directly, instead of doing trans-
lation in 2D slice by slice and concatenating, which makes
supervisory information be aware by the generators. The end-
to-end framework improves the performance of image-to-
image translation and thus promotes the image registration
process.
800
We validate the effectiveness of our method with the example of
pairwise multi-modal registration of 3D CT and MRI scans. Specifi-
cally, we evaluate the model performance on a well-aligned T1-T2
(MRI) dataset with manual deformations and a clinical CT-MRI
dataset. Experiment results demonstrate our method outperforms
other state-of-the-art approaches comprehensively considering
the speed, accuracy, and regularity of deformation fields and has
some positive effects on the image-to-image translation process.
Further ablation analysis validates the effectiveness of the proposed
collaborative cycle-consistency manner.
2. Related work

2.1. Deep Learning-based Medical Image Registration

VoxelMorph [17] has been the most prevalent method of med-
ical image registration for giving a generic unsupervised learning
pattern. In recent years, most of the proposed methods, both
mono-modal and multi-modal registration, are based on the pat-
tern to optimize a spatial transform network (STN) [18] by compar-
ing the warped image and the target one using similarity metrics.
In our study, the VoxelMorph pattern is integrated in the proposed
collaborative cycle-consistency manner.
2.2. Image-to-image Translation

Our work is an image-to-image translation-based method and
image-to-image translation was proposed for 2D natural images
synthesis originally. Phillip et al. proposed supervised image-to-
image translation method Pix2Pix [22] and then Zhu et al. pro-
posed unsupervised image-to-image translation method CycleGAN
[20]. After that, a lot of medical image synthesis methods were
proposed to translate medical images from one modality to
another, for example, from MRI to CT or from CBCT to CT [23–
25]. The image-to-image translation process is crucial in our
method for making it possible to evaluate the similarity between
images from different modalities.
2.3. Cycle-consistency

Zhu et al. proposed the cycle-consistency of image-to-image
translation in CycleGAN [20] and Kim et al. adopted the cycle-
consistency to improve the invertibility of image registration
[21]. The proposed method unified the cycle-consistency of image
registration and translation collaboratively.

The cycle-consistency forms of CycleGAN, the cycle-consistency
of registration and proposed CoCycleReg are illustrated in Fig. 1.
Specifically, CoCycleReg ensures the cycle-consistency during
image translation, which helps to keep the geometry shape consis-
tent during translation. And CoCycleReg also guarantees the cycle-
consistency during image registration, which helps to keep the
invertibility of bi-directional deformation fields.
2.4. Image-to-image Translation Based Multi-modal Image
Registration

With the development of image-to-image translation, it is pos-
sible to convert multi-modal image registration to mono-modal
image registration. For example, Wei et al. [13] used CycleGAN
[20] with the mutual information constraint to generate synthe-
sized CT image from the corresponding MR image slice by slice
and then concatenate 2D slices into 3D volumes, converting
multi-modal registration into a mono-modal problem. This type
of methods made the image-to-image translation and image regis-
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Fig. 1. Cycle-consistency forms of (a) CycleGAN, (b) the cycle-consistency of
registration and (c) proposed CoCycleReg, respectively. CycleGAN uses cycle-
consistency to achieve image-to-image translation between twomodalities, and the
cycle-consistency of registration works on the image registration process in the
single modality. Differently, the proposed CocycleReg uses the collaborative cycle-
consistency to help both the image registration and translation processes in two
different modalities. Only the flow fromX toY is given here and there is the similar
one from Y to X actually.X and Y represent two image modalities indicated by red
and blue, respectively.
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tration processes gradient discontinuous, resulting in that these two
stages cannot regulate each other [13,15].

Most related to our work, Arar et al. [14] introduced a multi-
modal registration method in 2D based on geometry preserving
image-to-image translation. They integrate the translation and
registration process and the translation and registration networks
are optimized simultaneously. However, this work focuses on 2D
natural image registration and the cycle-consistency of image-to-
image translation and image registration are not addressed. It
should be noted that the regularity and reversibility of deformation
fields are significantly important for medical image registration,
which is fully addressed in the proposed method.

3. Methods

Given a set of multi-modal image pairs ðxi; yiÞf gni¼1, where x 2 X

and y 2 Y, where X and Y denote two image modalities. For sim-
plicity, we denote a pair of multi-modal images as ðx; yÞ instead of
ðxi; yiÞ. As our task bi-directional multi-modal image registration,
for a given input image pair ðx; yÞ, our goal is to estimate bi-
directional deformation fields ð/x2y;/y2xÞ.

The pipelines of the proposed method from x to y and from y to
x are completely symmetrical and here we take the cycle process
from x to y as an example, as shown in Fig. 2(b). First, the deforma-
tion fields generating network RU generates bi-directional defor-
mation fields ð/x2y;/y2xÞ, as shown in Fig. 2(a). Second, the image
x is translated and warped through forward translation and regis-
tration flow into ŷ, where ŷ ¼ Tx2yðxÞ � /x2y. The process is called
forward flow of the collaborative cycle process. Finally, the
obtained ŷ is translated and warped through backward translation
registration flow back into x̂, where x̂ ¼ Ty2xðŷÞ � /y2x. The process is
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called backward flow of the collaborative cycle process. The for-
ward and backward processes constitute the collaborative cycle-
consistency of translation and registration flow.

The whole network is end-to-end and optimized by a combina-
tion of the similarity losses, the cycle-consistency losses and the
GAN losses. The similarity losses minimize the differences between
ŷ and y to train registration network and provide supervisory infor-
mation to image-to-image translation networks; the cycle-
consistency loss minimizes the differences between x̂ and x to help
translation networks to keep the geometry shape consistent during
translation and help to keep the invertibility of bi-directional
deformation fields; the GAN loss trains the image translation net-
works to translate images from the source domain to the target
domain.
3.1. Image Registration Network

Image registration network R ¼ ðRU;RSÞ is a spatial transforma-
tion network (STN) [18] composed of dual-head deformation fields
generating network RU and resampling layer RS. The dual-head
deformation fields generating network RU generates bi-
directional deformation fields ð/x2y;/y2xÞ and resampling layer RS

warps the moving images with corresponding deformation fields
that produced by RU, as shown in Fig. 2(a).

We know that bi-directional deformation fields are required for
bi-directional registration. And to improve the invertibility of bi-
directional deformation fields, previous approaches inverse the
deformation field of one direction directly to obtain the other
one [16] or adopt two registration networks and utilize cycle-
consistency loss [26]. The former brings strict invertibility con-
straint that is an over-strict requirement and not training-
friendly while the latter doubles the network parameters and
increases the difficulty of training as well. In contrast to these
methods, we adopt dual-head deformation fields generating net-
work (Fig. 3) and and regard the invertibility as a training target
during the collaborative cycle-consistency process, which simpli-
fies the training process and reduces about half of the parameters
of the registration network.

Next we will introduce how the registration network works. For
a given moving image x, the value of the warped image
x � /x2y ¼ RSðx;/x2yÞ at voxel v ¼ ði; j; kÞ is given by:

x � /x2y½v � ¼ x½v þ /x2yðvÞ�; ð1Þ

where /x2yðvÞ ¼ ðDz;Dy;Dx) is the deformation at voxel v ¼ ði; j; kÞ.
Because image values are only defined at integer locations, we
apply tri-linear interpolate to do an approximation.

Specifically, in our method RS works on the collaborative cycle
and the grads can be passed to RU for backward propagation. To
avoid generating non-smooth and not physically realistic deforma-
tion fields, we adopt smoothness regularization. We follow [16]
and encourage a smooth displacement / using a regularizer on
the spatial gradients of displacement u:

Lregularð/Þ ¼
X

v2X
ruðvÞk k2; ð2Þ

where / ¼ Identityþ u and v is a voxel of image. In practice, we
approximate the spatial gradients by differences between neighbor-
ing voxels. In summary, the smoothness loss in our method is given
by:

LsmoothðRÞ ¼ Lregularð/x2yÞ þLregularð/y2xÞ; ð3Þ

where /x2y and /y2x are bi-directional deformation fields.



Fig. 2. (a) The image registration network. Given the input ðx; yÞ;RU generates bi-directional deformation fields ð/x2y;/y2xÞ. RS is a tri-linear re-sampler layer, which warps the
moving images with corresponding deformation fields. (b) The collaborative cycle pipeline of the proposed CoCyleReg. We showcase the example from X to Y, and x is the
moving image from domain X and y is the fixed image from domain Y. Tx2y and Ty2x are image-to-image translation networks from domain X to Y and from Y to X,
respectively. Dx2y distinguishes whether an image from domain Y is real or not and used for calculating GAN loss.

2 16 32 32 32 32 32 16 16

3

3

3232 3211

Skip Connection
y

Fig. 3. The network structure of dual-head deformation fields generating network RU . The whole network except the final dual-head layer is UNet and the same to the
registration network in VoxelMorph[17]. Each head is a 3D convolutional layer with 16 channels input and 3 channels output following the last layer of the UNet backbone.
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3.2. Collaborative Cycle-consistency Network

The framework of our method is bi-directional and completely
symmetrical, we only describe the process from domain X to
domain Y as an example for simplicity and there is a similar pro-
cess from Y to X actually.

3.2.1. Translation and Registration Flow
The translation and registration flow first apply an image-to-

image translation on x to get Tx2yðxÞ, and then a spatial transforma-
tion on Tx2yðxÞ to generate ŷ, where ŷ ¼ Tx2yðxÞ � /x2y. To ensure the
global fidelity of the translated image, the GAN loss is applied. We
use PatchGAN [22] discriminator network Dx2y to classifies y as real
and ŷ as fake. The GAN loss LGAN

x2y is given by Eq. 4.

LGAN
x2y ðTx2yÞ ¼ E½D2

x2yðyÞ� þ E½ð1� Dx2yðŷÞÞ2� ð4Þ
The ideal translation and registration flow should generate an out-
put that is very close to the target image, i.e., ŷ � y. To achieve this
goal, we use the similarity loss to maximize the similarity between
ŷ and y. The similarity loss is defined as:

Lsim
x2yðR; Tx2yÞ ¼ ŷ� yk k1 ð5Þ
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The translation and registration flow is indicated by blue arrows in
Fig. 2(b). During the translation and registration flow, the registra-
tion network R is trained with the similarity loss. The translation
network Tx2y is not only trained with the GAN loss but also with
similarity loss, which shouldn’t be possible without well-aligned
images. However, the registration network corrects the misalign-
ment and introduces supervisory information to assist the training
of image-to-image translation networks, promoting the perfor-
mance of image-to-image translation.
3.2.2. Collaborative Cycle-consistency Regularization
The translation and registration flow in the above section is

called forward flow in the whole pipeline. In forward flow, the net-
work generates an output ŷ that is very close to the target image y.
However, we still need cycle consistency of image-to-image trans-
lation to keep the geometry shape consistent during translation
and cycle consistency of image registration to keep the invertibility
of deformation fields. So here we take the reversed translation and
registration process as the backward flow to be the regularization of
image registration and translation, which is indicated by orange
arrows in (Fig. 2(b)). Hence, when we transform ŷ to the original
modality X through the translation and registration process, the
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generated output x̂ should be very close to the input image x. We
formulate the whole training process in a collaborative cycle-
consistency way with the forward flow and the backward flow.
Specifically, after getting the output ŷ through forward flow, net-
work Ty2x translate ŷ back to Ty2xðŷÞ and then warp it back with
deformation field /y2x. After the backward flow, we get x, where
x̂ ¼ Ty2xðŷÞ � /y2x. Formally, the CoCycle loss is given by:

LCoCycle
x2y ðR; Tx2y; Ty2xÞ ¼ x̂� xk k1 ð6Þ
3.2.3. Overall Loss Function
As mentioned above, the data flow of the proposed method is

bi-directional and Fig. 2 (b) only shows the data flow from domain
X to domain Y. In the data flow of the other direction, y is trans-
lated and warped to x̂0 during forward flow, where
x̂0 ¼ Ty2xðyÞ � /y2x. And the obtained x̂0 is fed into the translation
network Tx2y and warped by /x2y to get the output ŷ0 during back-
ward flow, where ŷ0 ¼ Tx2yðx̂0 � /x2yÞ. The adversarial loss, similarity
loss, and CoCycle loss of the direction from domain X to domain Y

are given by Eq. (7)–(9), respectively.

LGAN
y2x ðTy2xÞ ¼ E½D2

y2xðxÞ� þ E½ð1� Dy2xðx̂0ÞÞ2� ð7Þ

Lsim
y2xðR; Ty2xÞ ¼ x̂0 � xk k1 ð8Þ

LCoCycle
y2x ðR; Ty2x; Tx2yÞ ¼ ŷ0 � yk k1 ð9Þ

In summary, the overall loss of image translation and registration is
given by:

LðR; Tx2y; Ty2xÞ ¼ Lsim
x2yðR; Tx2yÞ þLsim

y2xðR; Ty2xÞ þ kGAN

� ½argmax
Dx2y

LGAN
x2y ðTx2y;Dx2yÞ

þ argmax
Dy2x

LGAN
y2x ðTy2x;Dy2xÞ� þ kCoCycle

� ½LCoCycle
x2y ðR; Tx2y; Ty2xÞ

þLCoCycle
y2x ðR; Tx2y; Ty2xÞ� þ ksmooth

�LsmoothðRÞ: ð10Þ

The goal of the optimization is to find R�; T�
x2y and T�

y2x such that

R�; T�
x2y; T

�
y2x ¼ argmin

R;Tx2y ;Ty2x

LðR; Tx2y; Ty2xÞ: ð11Þ

In addition, kGAN ¼ 1; kCoCycle ¼ 1, and ksmooth ¼ 1 in the experiments.
However, these weights can be adjusted in the practical application
according to the accuracy-regularity trade-off.

3.2.4. Networks Details
The backbone of deformation fields generating network RU is

based on UNet [27]. The only modification is that we add two
heads after the final feature layer to generate bi-directional defor-
mation fields and each head is a 3D convolutional layer with 16
channels input and 3 channels output, as shown in Fig. 3. In our
experiments, the input is of size 2	 80	 144	 112 for T1-T2
(MRI) dataset and 2	 64	 144	 112 for CT-MRI dataset, but
because the batch size is 1, any depth, height, width that satisfies
a multiple of 16 is acceptable to the network. And RS is a re-
sample layer based on tri-linear interpolation. The image transla-
tion network Tx2y and Ty2x are Resnet [28]-based generators and
the discriminators Dx2y and Dy2x are PatchGAN [22] classifiers, fol-
lowing [20,22]. The input size of generators and discriminators is
the same to the input size of RU but with only 1 channel.
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4. Experiments

4.1. Experimental Design

We evaluate the present approach on two datasets with precise
manual segmentation. During the registration, the segmentation of
the moving image was warped simultaneously with the image, and
the accuracy was measured by the degree of overlap between the
fixed and warped segmentation. Dice Similarity Coefficient (DSC)
[29] and Hausdorff Distance-95 (HD95) are computed between
masks of fixed and warped images to measure the registration
accuracy. In addition, the number of voxels with a non-positive
Jacobian determinant is used to evaluate the regularity of the
deformation fields. The Jacobian determinant
J/ðvÞ ¼ r/ðvÞ 2 R3	3 reflect the local properties of deformation
field / around voxel v, and jJ/ðvj 
 0 indicates the deformation
in voxel v is not diffeomorphic [30]. We validate the effectiveness
of the proposed approach by setting up comparison experiments
with mainstream methods, and we set up an ablation analysis to
validate the superiority of the proposed collaborative cycle-
consistency. Moreover, the performances of image-to-image trans-
lation are compared between CycleGAN[20] and other comparative
image-to-image translation-based deep learning methods with the
proposed CoCycleReg to validate the effectiveness of collaborative
cycle-consistency manner furtherly.
4.2. Datasets and Preprocessing

We employ public BraTS dataset [31,32] and private neck and
head dataset to evaluate our method. This study was approved by
the institutional review boards at the hospital, and informed con-
sent was waived. The BraTS dataset is a dataset of multi-modal
MRI scans (T1, T2, T2-FLAIR, and T1CE) with precise manual seg-
mentation of tumors, including 285 cases. The dataset was col-
lected from 285 patients with glioblastomas from 19 to 86 years
old, both male and female. Only the T1 and T2-weighted images
were utilized in our experiments. Some images in the dataset are
very blurry. And the anatomy, which is very important for image
registration, is almost unrecognizable. Therefore, we asked profes-
sional radiologists to help us exclude these low-quality images (56
cases). In addition, we noticed that even in the same modality, the
contrast of the obtained MRI-T1 images varied considerably. In
order to more accurately compare the effectiveness of different
approaches and reduce the impact caused by the differences of
data, we excluded the images with too high or too low contrast.
Specifically, we calculated the standard deviation of the grayscale
of each voxel for each image and sorted the images from smallest
to largest by the standard deviation. The largest and smallest 25%
of each were excluded, and 114 cases were kept finally. The images
had been standardized into 3D volumes in size of 155	 240	 240
with 1 mm isotropic resolution and we cropped and resized all
cases into 80	 144	 112. As the provided T1-T2 (MRI) were col-
lected at almost the exact moment and already aligned, we fol-
lowed [33] to use random elastic deformation on control points
followed by Gaussian smoothing. The dataset was divided into
training, validation, and testing set by the ratio of 8:1:1. The Neck
and head dataset is a clinical CT-MRI dataset of head and neck col-
lected from 151 patients receiving a head and neck tumor diagno-
sis from 27 to 81 years old, both male and female. The two images
of a CT-MRI pair were collected at intervals ranging from a week to
a month. The dataset consists of 131 pairs without segmentation as
training set and 20 pairs with precise manual segmentation of par-
otid gland, which is divided into validation set (10 cases) and test-
ing set (10 cases). Affine alignment is carried out during pre-
processing and the clinical image pairs exist inevitable misalign-
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ments, so manual elastic deformation is not required. All cases
were standardized into 3D volumes with 3mm	 1mm	 1mm iso-
tropic resolution and cropped and resized into 64	 144	 112.

4.3. Experimental Results and Analysis

4.3.1. Comparisons with Mainstream Methods
To show the effectiveness of the proposed approach, we com-

pare with mainstream methods including conventional iterative
optimization-based method Elastix [10], metric-based deep learn-
ing method VMIND [12], which is based on VoxelMorph with sim-
ilarity loss MIND and regarded as the state-of-the-art metric-based
deep learning method. Besides, in order to show the superiority of
our method over the latest image-to-image translation-based deep
learning method, we modified [14], which is the state-of-the-art
method published in 2020, from 2D to 3D and tuned the parame-
ters carefully as a comparison, denoted as NeMAR (the official
name given by the authors) [14].

Examples of qualitative registration results are shown in Fig. 4,
where red, green and orange contours represent the moving,
ground-truth and warped boundaries, respectively. Red circles
mark regions where our method outperforms other methods. We
can see that our CoCycleReg is closer to the ground-truth boundary
than other methods. In order to measure the results more accu-
rately, we summarize the quantitative registration results in
Table 1. We use Dice Similarity Coefficient (DSC) [29] and Haus-
dorff Distance-95 (HD95) to evaluate the accuracy and use the
number of voxels with a non-positive Jacobian determinant (jJ/j)
to evaluate the regularity of deformation fields.

As shown in Table 1, our method surpasses all the other main-
stream methods in registration accuracy. Conventional iterative
optimization-based method Elastix has an outstanding perfor-
mance in the regularity of deformation fields but with inferior
accuracy. The most serious problem is that it is much slower than
other deep-learning methods, which is very disadvantageous to
Fig. 4. Visualization of the registration results. The red, green and orange contours repres
regions where our method outperforms other methods. The four rows show examples o
when zoomed in.
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clinical practice. Registering a pair of images takes close to twenty
seconds, which is considerable for tasks with high real-time
requirements, such as surgical navigation, automatic planning of
radiotherapy, etc. The image-to-image translation-based method
NeMAR has the closest performance in terms of accuracy of regis-
tration to our method, but the regularity of deformation fields is
much inferior to other methods. We can summarize from the table
that our method, as a learning-based method, has the advantage of
high speed compared to the conventional iterative optimization-
based methods like Elastix. Besides, the proposed method has a
better performance of accuracy and regularity of deformation
fields than other comparative learning-based methods.

4.3.2. Ablation Analysis
To the best of our knowledge, we are the first to integrate the

cycle-consistency of image registration and translation. However,
in order to validate the effectiveness of the proposed collaborative
cycle-consistency method, we compare our method with SepCy-
cleReg, where two cycle-consistency constraints are set Sepa-
rately. The comparison of cycle-consistency manners between
our CoCycleReg and the method SepCycleReg for ablation analysis
is illustrated in Fig. 6. Formally, here we replace Eq. 6, 9 with Eq.
12, 13:

LSepCycle
x2y ðR; Tx2y; Ty2xÞ ¼ ðx � /x2yÞ � /y2x � x

�� ��
1

þ Ty2xðTx2yðxÞÞ � x
�� ��

1 ð12Þ

LSepCycle
y2x ðR; Ty2x; Tx2yÞ ¼ ðy � /y2xÞ � /x2y � y

�� ��
1

þ Tx2yðTy2xðyÞÞ � y
�� ��

1 ð13Þ

To be consistent with comparative experiments, we use DSC and
HD95 to evaluate registration accuracy and use the number of vox-
els with a non-positive Jacobian determinant to evaluate the regu-
larity of deformation fields. The qualitative and quantitative results
ent the moving, ground-truth and warped boundaries, respectively. Red circles mark
f T1!T2, T2!T1, CT!MRI and MRI!CT respectively from top to bottom. Best seen



Table 1
Quantitative registration results on T1-T2 (MRI) dataset and CT-MRI dataset. DSC and HD95 measure the registration accuracy and the number of voxels with a non-positive
Jacobian determinant (jJ/j) is used to evaluate the regularity of the deformation fields. Running time on CPU and GPU measured in seconds shows the speed of different methods.

Affine Elastix [10] VMIND [12] NeMAR [14] SepCycleReg Ours

DSC(%)" T1!T2 80.22(4.88) 89.61(2.68) 87.53(2.85) 89.45(3.16) 89.17(3.01) 90.0(2.53)
T2!T1 80.22(4.88) 88.71(1.89) 86.59(2.77) 89.27(3.32) 88.62(2.85) 89.72(2.21)
MRI!CT 60.35(10.56) 73.67(3.34) 65.76(7.22) 71.77(4.14) 71.98(7.1) 74.27(5.27)
CT!MRI 60.35(10.56) 71.65(5.03) 63.65(7.57) 72.5(4.89) 72.12(6.89) 74.36(5.17)

HD95# T1!T2 7.2(1.74) 4.63(1.3) 5.61(0.82) 5.17(1.28) 5.07(0.87) 4.84(0.92)
T2!T1 7.2(1.74) 4.86(1.01) 5.59(0.67) 4.9(0.74) 5.15(0.86) 4.74(0.85)
MRI!CT 7.49(2.02) 6.47(1.69) 7.13(1.67) 6.74(1.92) 6.61(1.96) 6.36(1.64)
CT!MRI 7.49(2.02) 6.93(1.55) 7.81(1.86) 6.52(1.67) 6.6(1.76) 6.45(1.64)

jJ/j 
 0 # T1!T2 / 0.0(0.0) 0.0(0.0) 107.25(76.14) 21.08(47.57) 8.92(21.78)
T2!T1 / 0.0(0.0) 0.17(0.55) 49.67(36.71) 0.0(0.0) 0.5(1.38)
MRI!CT / 0.0(0.0) 441.0(293.35) 1330.4(1396.56) 102.4(145.11) 76.5(42.94)
CT!MRI / 0.0(0.0) 772.3(371.42) 4900.5(5731.96) 15.3(41.44) 132.1(115.75)

CPU sec# / / 17.87(0.43) 0.68(0.07) 0.68(0.07) 0.68(0.07) 0.68(0.07)
GPU sec# / / / 0.03(0.01) 0.03(0.01) 0.03(0.01) 0.03(0.01)

Fig. 5. Visualization of the image-to-image translation results. Each error map shows the absolute differences between translated images and the ground truth. The warmer
color shows larger differences and pure blue represents zero difference.
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of SepCycleReg are shown in the penultimate column of Fig. 4 and
Table 1, respectively. Experimental results shows that the proposed
method CoCycleReg outperforms SepCycleReg in registration accu-
racy and the regularity of deformation fields is in the same range.

4.3.3. Extensive Analysis of Image-to-image Translation Performance
The proposed multi-modal image registration method is an

image-to-image translation-based deep learning method. Most of
the time the registration performance of this kind of method
depends heavily on the performance of image-to-image transla-
tion. In order to analyse the influence of the proposed collaborative
cycle-consistency on image-to-image translation, we compare the
results of widely used image-to-image translation method Cycle-
GAN [20], the comparative method NeMAR[14] and the method
in ablation analysis SepCycleReg with the proposed CoCycleReg.
Root Mean Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR)
[34] and Structural SIMilarity (SSIM) [19] are utilized to measure
the quality of translated images. Quantitative results in Table 2
shows that the proposed CoCycleReg outperforms other methods
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in image-to-image translation. The result shows that the collabora-
tive cycle-consistency framework can not only promote image reg-
istration but also shows the same or, in some cases, slightly better
quality in image-to-image translation than baseline methods.
Visualization of the image-to-image translation results is shown
in Fig. 5, showing the translated images and their error maps. Each
error map shows the absolute differences between translated
image and the ground truth. The warmer color shows larger differ-
ences and pure blue represents zero difference.

4.3.4. Analysis on all 285 Cases of the BraTS dataset
And mentioned in Section 4.2, we have preprocessed the BraTS

dataset and only used 114 cases of the dataset. To validate the fair-
ness of the data cleaning, we supplemented experiments of the
proposed CoCycleReg, conventional iterative optimization-based
method Elastix and NeMAR (the best one of the comparative
learning-based methods) on all 285 cases of the BraTS dataset.
The experimental results (Table 3) showed that the performances
of each method decreased slightly, but the conclusion of the com-



CoCycle

Loss

(a) CoCycleReg (Ours)

Translation Registration

SepCycle

Loss

(b) SepCycleReg (Ablation Analysis)

Fig. 6. Illustration of comparison between (a) CoCycle loss in our method and (b)
SepCycle loss in the method for ablation analysis.

Table 3
Quantitative registration results on all 285 cases of the BraTS dataset.

Elastix NeMAR Ours

DSC(%)" T1!T2 89.23(2.95) 89.25(3.2) 89.58(3.63)
T2!T1 88.93(3.3) 88.21(2.55) 89.25(3.48)

HD95# T1!T2 5.2(1.51) 5.22(1.57) 5.01(1.35)
T2!T1 5.09(1.43) 5.32(1.12) 5.08(1.41)

jJ/j 
 0 # T1!T2 0.0 252.36(299.9) 5.25(24.81)
T2!T1 0.0 165.40(191.9) 2.75(6.27)

C. Lian, X. Li, L. Kong et al. Neurocomputing 500 (2022) 799–808
parative experiments still held for all the 285 cases. Notably, the
results in the supplementary experiments have more considerable
variances than the original experiments (especially notable for
HD95), which shows that the data cleaning process reduces the
impact caused by the difference of data.
4.4. Implementation Details

Our code is implemented using PyTorch 1.9.0 [35] and the
experiments were conducted on a single GeForce RTX 3090 GPU.
The training time is 45 h for 800 epochs using a single NVIDIA
GeForce RTX 3090 GPU, and 20 GB memory is required. We only
tested on NVIDIA GeForce RTX 3090 GPU, but any other cards for
deep learning with 20 GB memory are expected to meet computa-
tional power requirements. We train the network with batch size
1, and use Adam Optimizer with parameters lr ¼ 1	 e�4; b1 ¼ 0:5
and b2 ¼ 0:999. All networks were initialized by the Kaiming [36]
initialization method. For a fair comparison, the parameters are
the same and we train from scratch in all comparative experiments
and ablation studies. What’s more, the network backbone of regis-
tration networks, image-to-image translation networks and dis-
criminator networks are the same in all experiments.
Table 2
Quantitative results of the image-to-image translation.

CycleGAN [20] N

RMSE# T1!T2 0.2367(0.0435) 0.
T2!T1 0.157(0.0226) 0.

PSNR" T1!T2 23.15(1.16) 22
T2!T1 22.5(1.09) 22

SSIM" T1!T2 0.8435(0.0145) 0.
T2!T1 0.8464(0.0154) 0.
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5. Discussion and Conclusions

In this paper, we have proposed a novel deep learning frame-
work CoCycleReg for multi-modal medical image registration,
which focuses on the deep relationship between image registration
and image-to-image translation. CoCycleReg outperforms other
state-of-the-art approaches comprehensively considering the
speed, accuracy, and regularity of deformation fields.

We performed a set of comparative experiments validating that
CoCycleReg outperforms state-of-the-art methods of conventional
iterative optimization-based methods, metric-based deep learning
methods and image-to-image translation-based deep learning
methods. The ablation analysis validated that the collaborative
cycle-consistency was better than setting cycle-consistency of
image registration and translation separately, as Table 1 shows.
Further analysis of image-to-image translation performance
(Table 2) showed the proposed collaborative cycle-consistency
could not only promote the image registration process but also
had some positive effects on the image-to-image translation pro-
cess, which is very reasonable for the image-to-image
translation-based method.

CoCycleReg is a generic learning model for multi-modal image
registration. We didn’t design a particularly elaborate network
structure and the similarity loss function is just MAE, which is very
simple and can be replaced by other simple metrics if necessary.
Any extra constraints like MI, SSIM or MIND are not required in
the image registration or translation process. But the proposed
approach, like other deep learning-based approaches, is still
modality-related. i.e., a trained model can only work for two
modalities. And if there are many modalities, a lot of models will
be needed. We would like to extend the method to be more gener-
alized for different modalities using domain adaptation or domain
generalization, etc.Admittedly, our method is currently unable to
escape from the limitations of deep learning methods that are
highly data-dependent, while conventional iterative
optimization-based methods like Elastix do not need training and
are suitable for tasks without large databases. However, our
method is entirely unsupervised, and the training set does not
require any manual annotations, which is not too difficult to
obtain. Besides, we all believe that the development of science is
gradual, and we proposed an effective method in improving the
accuracy of multi-modal medical image registration in this work.
We believe more than ever that more high-quality data sets will
gradually emerge with the continuous improvement of the intelli-
eMAR[14] SepCycleReg Ours

2413(0.0377) 0.2299(0.0519) 0.2263(0.0345)
1553(0.0257) 0.151(0.0293) 0.1495(0.026)
.96(1.45) 23.45(1.56) 23.5(1.18)
.63(1.38) 22.92(1.54) 22.97(1.3)
8469(0.012) 0.8461(0.0184) 0.8473(0.0172)
8482(0.0171) 0.8515(0.0175) 0.8485(0.0161)
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gent medical system. The development prospects of deep learning
methods are promising, while conventional methods like Elastix
have relatively smaller development space.

In conclusion, the proposed CoCycleReg provides a simple,
steady and good performing training framework for the image-
to-image translation-based multi-modal image registration and
we hope the collaborative cycle-consistency will be useful to push
this frontier.

CRediT authorship contribution statement

Chenyu Lian: Conceptualization, Methodology, Writing - origi-
nal draft. Xiaomeng Li: Investigation, Writing - review & editing.
Lingke Kong: Investigation, Software. Jiacheng Wang: Visualiza-
tion, Software. Wei Zhang: Investigation, Validation. Xiaoyang
Huang: Validation, Formal analysis. LianshengWang: Supervision,
Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by the Fundamental Research Funds
for the Central Universities (Grant No. 20720190012,
20720210121).

References

[1] C.S. Kidwell, J.A. Chalela, J.L. Saver, S. Starkman, M.D. Hill, A.M. Demchuk, J.A.
Butman, N. Patronas, J.R. Alger, L.L. Latour, et al., Comparison of mri and ct for
detection of acute intracerebral hemorrhage, Jama 292 (15) (2004) 1823–1830.

[2] K. Sandrasegaran, A. Rajesh, D.A. Rushing, J. Rydberg, F.M. Akisik, J.D. Henley,
Gastrointestinal stromal tumors: Ct and mri findings, European radiology 15
(7) (2005) 1407–1414.

[3] I. Bankman, Handbook of medical image processing and analysis, Elsevier,
2008.

[4] S. Oh, S. Kim, Deformable image registration in radiation therapy, Radiation
oncology journal 35 (2) (2017) 101.

[5] M.A. Schmidt, G.S. Payne, Radiotherapy planning using mri, Physics in
Medicine & Biology 60 (22) (2015) R323.

[6] F. Liu, J. Cai, Y. Huo, C.-T. Cheng, A. Raju, D. Jin, J. Xiao, A. Yuille, L. Lu, C. Liao,
et al., Jssr: A joint synthesis, segmentation, and registration system for 3d
multi-modal image alignment of large-scale pathological ct scans, in:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XIII 16, Springer, 2020, pp. 257–274..

[7] B.B. Avants, C.L. Epstein, M. Grossman, J.C. Gee, Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of
elderly and neurodegenerative brain, Medical image analysis 12 (1) (2008) 26–
41.

[8] M.P. Heinrich, M. Jenkinson, M. Bhushan, T. Matin, F.V. Gleeson, M. Brady, J.A.
Schnabel, Mind: Modality independent neighbourhood descriptor for multi-
modal deformable registration, Medical image analysis 16 (7) (2012) 1423–
1435.

[9] B. Zitova, J. Flusser, Image registration methods: a survey, Image and vision
computing 21 (11) (2003) 977–1000.

[10] K. Marstal, F. Berendsen, M. Staring, S. Klein, Simpleelastix: A user-friendly,
multi-lingual library for medical image registration, in: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, 2016,
pp. 134–142..

[11] X. Cao, J. Yang, L. Wang, Z. Xue, Q. Wang, D. Shen, Deep learning based inter-
modality image registration supervised by intra-modality similarity, in:
International workshop on machine learning in medical imaging, Springer,
2018, pp. 55–63.

[12] C.K. Guo, Multi-modal image registration with unsupervised deep learning, Ph.
D. thesis, Massachusetts Institute of Technology (2019)..

[13] D. Wei, S. Ahmad, J. Huo, W. Peng, Y. Ge, Z. Xue, P.-T. Yap, W. Li, D. Shen, Q.
Wang, Synthesis and inpainting-based mr-ct registration for image-guided
thermal ablation of liver tumors, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2019, pp.
512–520.

[14] M. Arar, Y. Ginger, D. Danon, A.H. Bermano, D. Cohen-Or, Unsupervised multi-
modal image registration via geometry preserving image-to-image translation,
807
in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2020, pp. 13410–13419..

[15] Z. Xu, J. Luo, J. Yan, R. Pulya, X. Li, W. Wells, J. Jagadeesan, Adversarial uni-and
multi-modal stream networks for multimodal image registration, in:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, 2020, pp. 222–232.

[16] G. Balakrishnan, A. Zhao, M.R. Sabuncu, J. Guttag, A.V. Dalca, An unsupervised
learning model for deformable medical image registration, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp.
9252–9260..

[17] G. Balakrishnan, A. Zhao, M.R. Sabuncu, J. Guttag, A.V. Dalca, Voxelmorph: a
learning framework for deformable medical image registration, IEEE
transactions on medical imaging 38 (8) (2019) 1788–1800.

[18] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial transformer networks,
Advances in neural information processing systems 28 (2015) 2017–2025.

[19] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE transactions on image
processing 13 (4) (2004) 600–612.

[20] J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation
using cycle-consistent adversarial networks, in: Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2223–2232.

[21] B. Kim, J. Kim, J.-G. Lee, D.H. Kim, S.H. Park, J.C. Ye, Unsupervised deformable
image registration using cycle-consistent cnn, in: International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer,
2019, pp. 166–174.

[22] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with
conditional adversarial networks, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1125–1134..

[23] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q. Wang, D. Shen, Medical image
synthesis with context-aware generative adversarial networks, in:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, 2017, pp. 417–425.

[24] X. Liang, L. Chen, D. Nguyen, Z. Zhou, X. Gu, M. Yang, J. Wang, S. Jiang,
Generating synthesized computed tomography (ct) from cone-beam
computed tomography (cbct) using cyclegan for adaptive radiation therapy,
Physics in Medicine & Biology 64 (12) (2019) 125002.

[25] L. Kong, C. Lian, D. Huang, Y. Hu, Q. Zhou, et al., Breaking the dilemma of
medical image-to-image translation, Advances in Neural Information
Processing Systems 34..

[26] D. Mahapatra, B. Antony, S. Sedai, R. Garnavi, Deformable medical image
registration using generative adversarial networks, in: 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018, pp.
1449–1453.

[27] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2015, pp.
234–241.

[28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778..

[29] L.R. Dice, Measures of the amount of ecologic association between species,
Ecology 26 (3) (1945) 297–302.

[30] J. Ashburner, A fast diffeomorphic image registration algorithm, Neuroimage
38 (1) (2007) 95–113.

[31] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y.
Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor image
segmentation benchmark (brats), IEEE transactions on medical imaging 34
(10) (2014) 1993–2024.

[32] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, J.B. Freymann, K.
Farahani, C. Davatzikos, Advancing the cancer genome atlas glioma mri
collections with expert segmentation labels and radiomic features, Scientific
data 4 (1) (2017) 1–13.

[33] C. Qin, B. Shi, R. Liao, T. Mansi, D. Rueckert, A. Kamen, Unsupervised
deformable registration for multi-modal images via disentangled
representations, in: International Conference on Information Processing in
Medical Imaging, Springer, 2019, pp. 249–261.

[34] A. Hore, D. Ziou, Image quality metrics: Psnr vs. ssim, in: 2010 20th
international conference on pattern recognition, IEEE, 2010, pp. 2366–2369.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Advances in neural information processing systems 32
(2019) 8026–8037.

[36] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, in: Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034..

http://refhub.elsevier.com/S0925-2312(22)00699-3/h0005
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0005
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0005
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0010
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0010
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0010
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0015
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0015
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0015
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0020
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0020
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0025
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0035
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0035
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0035
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0035
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0040
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0040
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0040
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0040
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0045
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0045
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0055
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0055
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0055
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0055
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0055
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0065
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0075
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0075
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0075
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0075
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0075
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0085
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0090
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0095
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0100
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0105
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0115
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0120
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0120
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0120
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0120
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0130
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0130
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0130
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0130
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0130
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0135
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0135
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0135
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0135
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0135
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0145
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0150
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0150
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0155
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0160
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0160
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0160
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0160
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0165
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0170
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0175
http://refhub.elsevier.com/S0925-2312(22)00699-3/h0175


C. Lian, X. Li, L. Kong et al. Neurocomputing 500 (2022) 799–808
Chenyu Lian received the B.S. degree from Xiamen
University in 2021 and now is a master student in the
Department of Computer Science, Xiamen University,
Xiamen, China. His main research interests include
medical image analysis and machine learning.
Dr. Xiaomeng Li is an Assistant Professor at the
Department of Electronic and Computer Engineering at
The Hong Kong University of Science and Technology.
Before joining HKUST, she was a Postdoctoral Research
Fellow at Stanford University. She obtained my Ph.D.
degree from The Chinese University of Hong Kong. Her
research lies in the interdisciplinary areas of artificial
intelligence and medical image analysis, aiming at
advancing healthcare with machine intelligence.
Lingke Kong received the M.S. degree from HuaQiao
University in 2020 and now is an algorithm engineer in
the department of Scientific Research from Manteia
Technologies Co.,Ltd., Xiamen, China. His main research
interests include medical image registration and
machine learning.
Jiacheng Wang received the B.S. degree from Xiamen
University in 2018 and now is a Ph.D. student in the
Department of Computer Science from Xiamen Univer-
sity, Xiamen, China. His main research interests include
medical image processing and machine learning.
808
Wei Zhang, researcher at Manteia Technologies Co.,Ltd.,
located in Xiamen, China, got master degree of engi-
neering at Nanjing University of Science and Technology
in 2018. His current research interests focus on deep
learning-based applications in the field of radiation
therapy, including medical image analysis, automated
planning.
Xiaoyang Huang is currently an Assistant Professor in
the Department of Computer Science, Xiamen Univer-
sity, Xiamen, China. His research interests include
medical image processing.
LianshengWang received the Ph.D. degree in Computer
Science from the Chinese University of Hong Kong in
2012. He is currently an Associate Professor in the
Department of Computer Science, Xiamen University,
Xiamen, China. His research interests include medical
image processing and analysis, machine learning, big
medical data.


	CoCycleReg: Collaborative cycle-consistency method for multi-modal medical image registration
	1 Introduction
	2 Related work
	2.1 Deep Learning-based Medical Image Registration
	2.2 Image-to-image Translation
	2.3 Cycle-consistency
	2.4 Image-to-image Translation Based Multi-modal Image Registration

	3 Methods
	3.1 Image Registration Network
	3.2 Collaborative Cycle-consistency Network
	3.2.1 Translation and Registration Flow
	3.2.2 Collaborative Cycle-consistency Regularization
	3.2.3 Overall Loss Function
	3.2.4 Networks Details


	4 Experiments
	4.1 Experimental Design
	4.2 Datasets and Preprocessing
	4.3 Experimental Results and Analysis
	4.3.1 Comparisons with Mainstream Methods
	4.3.2 Ablation Analysis
	4.3.3 Extensive Analysis of Image-to-image Translation Performance
	4.3.4 Analysis on all 285 Cases of the BraTS dataset

	4.4 Implementation Details

	5 Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


