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Exploring Segment-Level Semantics for Online
Phase Recognition From Surgical Videos

Xinpeng Ding and Xiaomeng Li , Member, IEEE

Abstract— Automatic surgical phase recognition plays
a vital role in robot-assisted surgeries. Existing methods
ignored a pivotal problem that surgical phases should
be classified by learning segment-level semantics instead
of solely relying on frame-wise information. This paper
presents a segment-attentive hierarchical consistency net-
work (SAHC) for surgical phase recognition from videos.
The key idea is to extract hierarchical high-level semantic-
consistent segments and use them to refine the erroneous
predictions caused by ambiguous frames. To achieve it,
we design a temporal hierarchical network to generate
hierarchical high-level segments. Then, we introduce a hier-
archical segment-frame attention module to capture rela-
tions between the low-level frames and high-level segments.
By regularizing the predictions of frames and their corre-
sponding segments via a consistency loss, the network can
generate semantic-consistent segments and then rectify
the misclassified predictions caused by ambiguous low-
level frames. We validate SAHC on two public surgical
video datasets, i.e., the M2CAI16 challenge dataset and
the Cholec80 dataset. Experimental results show that our
method outperforms previous state-of-the-arts and ablation
studies prove the effectiveness of our proposed modules.
Our code has been released at: https://github.com/xmed-
lab/SAHC.

Index Terms— Surgical video analysis, surgical phase
recognition.

I. INTRODUCTION

COMPUTER-ASSISTED surgery systems can be used
for pre-operative planning, surgical navigation and assist

doctors in performing surgical procedures in modern operating
rooms [1], [2]. Surgical phase recognition, one crucial and
challenging task in computer-assisted surgery systems, aims
to recognize the surgical activities from a surgery video [3].
It can monitor surgical processes and early alert the potential
deviations and anomalies, advise the optimal arrangement, and
provide clinical decision support [4]. Hence, developing an
accurate online phase recognition algorithm, i.e., predicts what
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phase is occurring at the current frame without knowing the
future information from surgery videos, is highly demanded
in clinical practice.

One of the most critical challenges in automatically recog-
nizing the surgical phase from videos is that the complicated
surgical scenes usually have limited inter-phase variance and
high intra-phase variance. As shown in Fig. 1(a), two frames
from two different surgical phases, e.g., “GallbladderPackag-
ing” and “GallbladderRetraction”, has a high visual similarity,
which may easily lead to misclassification of the surgical
phases. Hence, learning the long-range temporal dynamics by
observing the neighboring frames is the key solution to this
problem.

Recent studies solved this issue by capturing the long-term
frame-wise relation between the current frame and previous
frames [5], [6]. For example, Jin et al. [5] introduced TMRNet,
which contains a memory bank to store long-range information
to learn the relation between the current frame and previous
frames. Another category of research [7], [8] employed a
multi-stage architecture, including a predictor stage to generate
a frame-wise prediction and a refinement stage to refine
the previous prediction. For example, Czempiel et al. [7]
introduced MS-TCN [9] into surgical phase recognition, and
used causal temporal convolutional networks [10] for online
prediction. To solve the insufficient training of the refinement
stage, Yi et al. [8] proposed a non-end-to-end stage to train
the refinement stage separately.

Although these methods attempted to learn long-range tem-
poral dynamics, they generated phase predictions by learning
inter-frame relations in a low-level fine-grained way. In this
paper, we aim to explore that: would the frame-level phase
recognition be improved by incorporating segment-level mod-
eling? As shown in Fig. 1(b), two ambiguous frames (solid red
boxes) are too similar, making the model hard to distinguish
between two surgical phases. In contrast, their corresponding
high-level segment (dashed boxes) can present discriminative
semantics for surgical activities, contributing to the better
recognition of surgical phase; see Fig. 5 for details.

To this end, we present a segment-attentive hierarchical con-
sistency network (SAHC) for online phase recognition from
surgical videos. The key idea is to learn high-level segments
from surgical videos and then adopt them to rectify the
ambiguous semantics caused by low-level frames. To achieve
it, we first design a hierarchical temporal feature extractor to
generate high-level segments by capturing the feature of the
current frame and its multi-scale neighboring frames. Then,
to rectify the ambiguous information in low-level frames,
we develop a hierarchical segment-frame attention to capture
the relations between the high-level temporal segments and
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Fig. 1. (a) Ambiguous frame information would make the model gener-
ate erroneous predictions for surgical phase recognition. (b) Segment-
level difference. Compared to the frame-level information, segment-level
information can present more discriminative features for surgical phase
recognition.

low-level frames. By enhancing the consistency of the pre-
dictions from frames and their neighboring segments, we find
that the features of ambiguous frames and their corresponding
high-level segments would be pulled together, resulting in the
effective refinement of the frame-wise ambiguity.

This paper has the following contributions:
• We introduce the importance of high-level segment infor-

mation for surgical phase recognition, and leverage its
semantics to refine the ambiguous low-level frames.

• We present a segment-attentive hierarchical consistency
network (SAHC), which generates high-level semantic-
consistent segments and then rectifies prediction errors
via a segment-attentive module.

• We propose a hierarchical segment-frame attention mod-
ule to learn relationships between frames and segments.

• Experiments on two public surgical phase recognition
datasets show that our method achieves a significant
improvement over the prior art, e.g., over 3.8% on the
M2CAI16 dataset.

II. RELATED WORK

A. Surgical Phase Recognition From Surgical Video

Early work for surgical phase recognition from surgical
videos is mainly based on hand-crafted features, such as
pixel values and intensity gradients [11], spatial-temporal
features [12] and features consisting of color, texture, and
shape [13]. Concurrently, there are also other works that
using linear statistical models to capture the temporal infor-
mation of surgical videos, e.g., left-right HMM [13], Hidden
semi-Markov Model [14], hierarchical HMM [3], conditional
Random Fields [15]–[17] and Dynamic Time Warping [11].
However, their performance is limited by the empirically
designed low-level features. In recent years, neural networks
have extracted spatial and temporal features for surgical phase
recognition from surgical videos. These methods can be
broadly classified into two categories.

One category aims at modeling spatial and temporal features
with frame-wise labels. For example, Twinanda et al. [3]
employed ResNet [18] to extract video-level features and
demonstrated its effectiveness for surgical phase recognition.
Jin et al. [19] introduced SV-RCNet, a unified framework
that integrates ResNet and LSTM module to sequentially
learn spatial-temporal features for surgical phase recognition.
To effectively capture the long-range temporal dynamics,
Jin et al. [5] developed TMRNet, which consists of a memory
bank to fuse long-range and multi-scale temporal features
for surgical phase recognition. In addition to learning tem-
poral information, Gao et al. [6] used a hybrid embedding
aggregation transformer to enhance the importance of spatial
features for phase recognition. Some work employed multi-
stage architecture, e.g., a predictor stage and a refinement
stage, in surgical phase recognition, where the misclassifica-
tion in the predictor stage can be well rectified during the
refinement stage. For example, TeCNO [7] adapted the multi-
stage temporal convolution network (MS-TCN) [9], [20] to
online surgery scenario via causal and dilated convolutions.
Yi et al. [8] found that directly using MS-TCN brings little
improvement and then proposed a new non end-to-end training
strategy.

Another category leverages additional information, e.g.,
designing multi-task learning to improve the performance for
surgical phase recognition. For instance, Twinanda et al. [3]
trained a shared work for feature extraction in a multi-task way
consisting of tool presence detection and phase recognition.
Zisimopoulos et al. [21] used a ResNet [18] to predict the
binary predictions for the tool presence and then combine
the predictions and features for phase recognition. MTRCNet-
CL [22] introduced a novel correlation loss to explicitly model
the relations between tool presence and phase classification.
In addition to the tool information, Nakawala et al. [23]
leveraged more cues, such as management tools, ontology
and production rules to improve the performance. Some
works [24] also extracted the optical flows and leverage the
motion information to enhance the learning of the model.
These methods suffer from extra annotation cost for multi-
tasking or bring additional computation overhead to obtain
other modalities, e.g., optical flows.

Our method belongs to the first category. Most existing
methods aim to capture frame-wise relations by learning
temporal dynamics while ignoring the high-level semantic
information and its influences for low-level frames. There
are some works [16] using conditional Random Fields to
combine frame-level information for high-level surgical tasks.
However, in surgical phase recognition, we need detailed
frame-wise classification. In this paper, we combine the high
segment-level and low frame-level semantics for surgical phase
recognition. By the proposed segment-frame attention, our
model uses high-level semantics to refine low-level errors to
improve the frame-level performance.

B. Temporal Pyramid Learning in Videos

Our method is also related to the temporal pyramid learning
in video action recognition tasks. Temporal pyramid methods
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Fig. 2. Illustration of our proposed Segment-Attentive Hierarchical Consistency Network (SAHC). The frame-wise feature H is extracted after
feeding video frames into the frame-wise feature encoder. Then, several stacked residual causal dilated temporal convolution layers (RCDL), defined
in Section III-A and Fig. 3(b), takes H as the input to obtain F0. Since the frames in different phases show very similar appearance, i.e., ambiguous
(see red hollow boxes), the model would extract some ambiguous features (i.e., red solid circles), which would result in ambiguous predictions (see
red solid boxes). To alleviate this, based on the frame features, we introduce M segment-wise feature extractors (SFE), defined in Section III-B.1 and
Fig. 3, to extract a set of hierarchical segment features {Fi}Mi=1, which contains more discriminative information (see green and orange triangles).
After adding the positional encoding (PE) to {Fi}Mi=1, we obtain {Fi

pos}Mi =1 and then use a hierarchical segment-frame attention (SFA), defined in
Section III-C and Fig. 4, to capture the relations between frames and segments. Finally, we regularize the network to encourage all prediction from
low-level to high-level, i.e., {ŷi

p}3i =0, to be consistent, which uses correct high-level predictions to refine the low-level ones.

aim to process the variant duration of actions by extracting
multi-scale temporal information from videos.

Early approaches generated a fixed multi-scale sliding
windows, which act as proposals for temporal action local-
ization [25]–[27] or video grounding [28]–[31]. Recently,
researchers sampled frames at different temporal rates to
construct an input-level frame pyramid. And frames in each
level of the pyramid were extracted by separate networks
to obtain the corresponding mid-level features, which were
then fused for final prediction [32], [33]. However, these
methods required the additional networks, which may be
computationally expensive [34]. Motivated by the feature
pyramid network (FPN) [35], Yang et al. [34] captured visual
tempos in multi-scale feature levels with only a single input.
Specifically, they utilized a feature pyramid network that
temporally downsamples features to obtain different temporal
scales.

Compared with existing temporal pyramid networks [31],
[34] for video analysis in computer vision, our method
has the following differences. (1) Different video tasks and
bottlenecks. Existing methods [31], [34] proposed to learn
multi-temporal scales to tackle the variant duration of the
action instances for natural video action recognition. In con-
trast, our goal is to use segment-level information to refine
the erroneous predictions caused by ambiguous frame-level
information in surgical videos. (2) Network design with con-
sistency regularization. We design a hierarchical network with
consistency regularization to rectify the erroneous prediction
caused by ambiguous frame-level information. (3) Attention.

We further introduce an attention module to capture the rela-
tionship between frame- and segment-level information. These
two contributions do not exist in current temporal pyramid
methods.

C. Long-Term Video Understanding

To capture long-term information of videos, Farha et al. [9],
[20] propose a multi-stage temporal convolution network
(MS-TCN) for the temporal action segmentation task, which
enlarges the receptive fields to capture long-range temporal
information by cascaded dilated 1D convolutions. To reduce
the annotation cost in long videos, Zhukov et al. [36] intro-
duces a long-range temporal order verification to to isolate
actions from their background in a self-supervised manner.
Wu et al. [37] propose a long-term feature bank to contain sup-
portive information from the entire video, which augments the
state-of-the-art video models that otherwise would only view
short clips of 2-5 seconds. Recently, Object Transformer [38]
is proposed to use transformer [39] to model the long-term
relations. In this paper, we follow previous works [7], [8],
[40] to use cascaded TCN to capture long-range information
for surgical videos.

III. METHODOLOGY

Fig. 2 illustrates our proposed segment-attentive hierar-
chical consistency network (SAHC). The video frames are
firstly fed into (a) a spatial-temporal feature extractor to
obtain the features with temporal frame-level information,
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followed by (b) a segment-level hierarchical network consists
of three segment-wise feature extractors (SFE) to capture
the multi-scale segment-level semantics. After that, we intro-
duce (c) a segment-frame attention (SFA) module to jointly
learn the relations between frames and segments. Finally, (d)
the segment-frame hierarchical consistency loss is developed
to enhance the consistent prediction from low-level frames
and their neighbouring segments, such that the erroneous
frame-wise prediction can be rectified by segments. In the
following sections, we describe our method in detail.

A. Spatial-Temporal Feature Extractor

We denote a video as V = {vt }T −1
t=0 , where T is the number

of frames and vt ∈ R
H×W×3 is a frame with height H , weight

W and three channels. Let C denote a set of surgical phases,
where C = {0, . . . , C − 1} and C is the number of phase
categories. Our goal is to learn a deep network fθ that maps
the input vt to a phase label yt ∈ R

C , which is a one-hot
vector of phase label c ∈ C.

In order to capture the spatial-temporal information of the
videos, we first extract the frame-wise feature, and then use
the temporal convolutional network to model their temporal
relations. Specifically, we first feed the frames V into the
the spatial encoder, i.e., ResNet-50 [18], to extract the spatial
feature of each frame, denoted as H = {ht }T −1

t=0 , where ht ∈
R

D is the feature of the vt and D the dimension of the feature.
Then, we feed H ∈ R

T ×D into several stacked residual
causal dilated temporal convolution layers (RCDL) (shown in
Fig. 3(b)) to capture the frame-wise relation and obtain the
corresponding features F0 ∈ R

T ×D . The operations of each
RCDL can be formally as follows:

Zl = ReLU
(
W1,l ∗ Fl−1 + b1,l

)
, (1)

Fl = Fl−1 + W2,l ∗ Zl + b2,l , (2)

where Fl is the output of the layer l, ∗ denotes the convolution
operator, W1,l is the dilated 1D convolution kernel [7], W2,l

is the weights of a 1 × 1 convolution and b1,l , b2,l are
bias vectors. The dimension of Fi is set to 64 in all RCDL.
Following [7], to predict the label of frame ft , casual dilated
convolution only relies on the current and previous frames, i.e.,
(ft−n, . . . , ft ), which allows for the online recognition. Before
the residual addition in Eq. 2, we adopt the dropout [41] to
avoid over-fitting. In this paper, we set L to be 11 as same
in [20]. To achieve online recognition of surgical activities,
we use the casual dilated convolution that only relies on the
current and previous frames, i.e., (ft−n, . . . , ft ).

B. Segment-Level Hierarchical Network

1) Segment-Level Feature Extractor (SFE): After obtaining
the frame-level temporal features F0, we then use them to
extract the information of segments by a segment-level feature
extractor. Each segment-level feature extractor consists of a
temporal fusion layer (see Fig. 3(a)), followed by several L
stacked RCDL (see details in Section III-A and Fig. 3(b)).
The goal of the temporal fusion layer is to aggregate the
features of a frame and its neighbouring frames to obtain

Fig. 3. Illustration of SFE. It consists of two main components:
(a) the temporal fusion layer and (b) L stacked residual causal dilated
temporal convolution layers (RCDL). After feeding low-level features into
the temporal fusion layer, we obtain the high-level features. Then, we use
RCDL to capture the relations between high-level features.

their corresponding segment features, which can be formally
defined as:

fs
p = TFL(f0

t , . . . , f0
t+k), (3)

where TFL refers to the operation of the temporal fusion
layer, fs

p is the segment feature and k indicates the number of
frames that each segment contains. We have several choices
to devise the temporal fusion layer, e.g., a convolution layer,
a max-pooling layer or an average pooling layer with kernel
size and stride of k. For examples shown in Fig. 3, given a
sequence low-level input features {fi }5

i=0 and a temporal fusion
layer with kernel size and stride of 2, we will then obtain the
high-level output features of {fs

i }2
i=0. The segment feature fs

0
aggregates f0 and f1, and fs

1 aggregates f2 and f3, and so on.
Hence, after feeding F0 into the temporal fusion layer,

we obtain the segment-level features, defined as Fs =
{fs

p}T s−1
p=0 ∈ R

T s×D . T s = �T/k� and �·� indicates the round
down. We can achieve this by several methods, e.g., the convo-
lution, the max-pooling and the average-pooling with setting
both the kernel size and stride to k. We will discuss these
different kinds of temporal fusion layers in Section IV-C.4.
Similar in frame-level, we also expect the model to capture the
temporal relations between segments. To this end, we input Fs

into RCDL to use temporal convolution to capture relations in
Fs and finally obtain the output F1.

The implementation of our temporal fusion layer, i.e., fusing
frames to obtain the segments, may generate the ambigu-
ous segments, which contains frames belonging to different
phases. In surgical videos, the category of frames in the same
phases are consistent. Hence, only segments in the boundaries
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Fig. 4. Illustration of (a) the hierarchical SFA (described in Fig. 2(c)) and
(b) the transformer (Trans) layer.

between two phases would contain frames with different class
labels. That is to say, the number of ambiguous segments is
too few and can be ignored.

2) Hierarchical Network: The duration of surgical videos
and phases is various [5]; hence we need to extract the
multi-scale temporal information for segments. To achieve it,
we introduce a hierarchical network, consisting of a sequence
of segment-level feature extractor modules, to obtain a set
of features, i.e., {Fi ∈ R

Ti×D}M
i=1, where M is the number

of different temporal scales. In this paper, we set M =
3 empirically. Fi is the output of the i -th segment-level feature
extractor in the segment-level feature extractor sequence, and
T i is its temporal duration and T i+1 = ⌊

T i/k
⌋

.

C. Segment-Frame Attention (SFA) Module

The proposed RCDL in Section III-B.1 can only model the
relations in each scale, i.e., the relations in Fi . To use the
high-level segment information to refine the erroneous pre-
dictions in low-level frames, we need to capture the relations
between features in different scales, e.g., frames F0 and its cor-
responding segments F1 and F2 and F3, respectively. Recently,
Transformer [39], a kind of attention layer, shows promising
results in learning attentive weights/relationships with appli-
cations in images, words, and videos [39], [42]–[48]. Here,
we adopt the transformer to learn the relationships between
segments and frames.

To this end, we design a segment-frame attention (SFA)
module, where frames are used as the queries, and hierarchical
segments are served as keys and values. In this way, the
query, i.e., a frame, can find its relation with segments overall
the video across different phases, and use the features of
its high-level segments to refine the ambiguous frames, i.e.,
pushing the frame-level features to be close with the segment-
level ones. See qualitative analysis in Fig. 6. Since there is no
frame sequence information in the attention module, we need
to embed position encoding additionally, which is formulated
as:

Fi
pos = Fi + E, i ∈ {0, . . . , M} (4)

where E ∈ R
T ×D is the learned positional embedding,

M is the number of different temporal scales (defined in

Section III-B.2) and we set M = 3 empirically. Fig. 4(a)
shows the details of the hierarchical SFA. Concretely, F0

pos and
{Fi

pos}3
i=1 are fed into three shared transformer layers (Trans

layer) and then generate a set of outputs, defined as {F̂i }3
i=1.

We finally concatenate the multi-scale aggregated features

{F̂i }3
i=1 to obtain the final feature F = {ft }T −1

t=0 . The details of
the Trans layer are shown in Fig. 4(b). The core component
of the Trans layer is the multi-head attention, and the intuitive
idea is that each token can interact with other tokens and can
learn to aggregate useful semantics more effectively. Given
F0

pos and Fi
pos , each head of the multi-head attention can be

formally defined as follows:

Attention
(

Q; Ki ; Vi
)

= softmax

(
QKi �
√

D

)
Vi (5)

where Q = F0
posWq

i , Ki = Fi
posWk

i and Vi = Fi
posWv

i

are linear layers, and Wq
i , Wk

i , Wv
i ∈ R

D× D
Nhead . Nhead is

the number of heads and
√

D controls the effect of growing
magnitude of dot-product with larger D [39]. Subsequently,
the output of all heads are concatenated and fed into a linear
layer, followed by a layer normalization [49]. Then, it is
followed by a feed-forward network with ReLU activation.
The residual connection [18] and layer normalization [49] are
also applied as in the multi-head attention. Finally, we obtain

the output of each Trans layer, F̂
i
. We then concatenate the

multi-scale aggregated features {F̂i }3
i=1 to obtain the final

feature F = {ft }T−1
t=0 .

D. Consistency Between Frames and Segments

Based on the final obtained features of frames F0 and
multi-scale segments {Fi }3

i=1, we get their corresponding
predictions ŷ0

t and Ŷt = {ŷi
p}3

i=1 by a shared prediction

network, where {ŷ0
t } ∈ R

C×T and {ŷi
p ∈ R

C×T i }3
i=1. The

shared prediction network is a convolution layer. The kernel
size, stride, input dimension and the output dimension are 1,
1, 256, 7, respectively. The network simply follows previous
state-of-the-art methods (Yi and Jiang 2021; Czempiel et al.
2020). Then, the classification losses of the frames (L f rame)
and their corresponding neighbouring segments (Lsegment ) can
be defined as follows:

L f rame = − 1

T

T −1∑
t=0

C−1∑
c=0

y0
t,c log(ŷ0

t,c), (6)

Lsegment = − β

T i

3∑
i=1

T i −1∑
p=0

C−1∑
c=0

yi
p,c log(ŷi

p,c), (7)

where yi
p,c ∈ R

C×T i
is the corresponding ground truth at

i -th scale, which is generated by applying down-sampling
to yt,c. β is the hyper-parameter to control the weight of
the segment-wise prediction at different scales. The multi-
scale consistency loss can be the combination of L f rame and
Lsegment :

Lmsc = L f rame + Lsegment . (8)
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In this way, the model would encourage the consistency of
the prediction of the frames and their segments at multi-
scale tempos. For predicting more smoothing results, a mean
squared error over the classification probabilities of every two
adjacent frames are used [9]:

Lsmooth = 1

T C

C−1∑
c=0

T −1∑
t=1

∣∣∣ŷ0
t,c − ŷ0

t+1,c

∣∣∣2

+ β

T i C

3∑
i=1

T i −1∑
p=0

C−1∑
c=0

∣∣∣ŷi
p,c − ŷi

p+1,c

∣∣∣2
. (9)

Hence, the overall of the objective of our SAHC is:
L = Lmsc + λLsmooth, (10)

where λ is a hyper-parameter to control the weight between
two losses. We will discuss the effect of α and λ in Experi-
ments.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed SAHC on two
benchmark datasets for surgical phase recognition.

A. Datasets, Metrics and Implementation Details

1) Datasets:
a) M2CAI16: The M2CAI16 dataset [51] consists of

41 laparoscopic videos at 25 fps and each frame is with a res-
olution of 1920 × 1080. The videos contain 8 surgical phases,
i.e., TrocarPlacement, Preparation, CalotTriangleDissection,
ClippingCutting, GallbladderDissection, GallbladderRetrac-
tion, CleaningCoagulation, GallbladderPackaging, labeled by
professional surgeons. More detailed information can be found
in [19]. We use 27 videos for training, 7 videos for validation
and 14 videos for testing, following the same evaluation
protocols in [5]. Note that the validation set is used for model
and hyper-parameters selection. All videos are sub-sampled to
5 fps. All frames of videos belong to one and only one phase
label, and there are not any background frames.

b) Cholec80: The Cholec80 dataset [3] contains 80 videos
of cholecystectomy surgeries, which are are recorded at
25 fps and are annotated into 7 surgical phases: Preparation,
CalotTriangleDissection, ClippingCutting, GallbladderDissec-
tion, GallbladderRetraction, CleaningCoagulation, Gallblad-
derPackaging. The resolution of each frame is 1920×1080 or
854 × 480. We split the dataset into 40 training videos,
8 validation videos and 40 testing videos, following the same
setting in prior methods [5]. Similar as M2CAI16, we also use
the validation set for model and hyper-parameters selection.
All videos of both M2CAI16 and Cholec80 datasets are
sub-sampled into 5 fps. All frames in two datasets belong
to one and only one phase label, and there are not any
background frames. The datasets (M2CAI16 and Cholec80)
we employed in this work are the largest public benchmark
datasets, which have been widely used in many published
surgical workflow recognition papers [5], [7], [8], [19], [22].
The datasets we used are very challenging and hard to be

Fig. 5. Effect of learning with segment-level semantics. We visualize
results, i.e., Accuracy, precision, recall and jaccard (see definition in
Section IV-A), on baseline model with different temporal scale, i.e., 1,
3, 5, on the M2CAI16 dataset [51]. It is clear that segments with more
frames achieve higher performance.

overfitting. The reasons are shown as follows: (a) The duration
of each video is very long (around 30 minutes), and each of the
dataset has around more than 170K frames, which is hard to
over-fitting (note that our task is a frame-wise classification).
(b) The variance for videos and different phases is very large.
For example, the Cholec80 datasets is collected by 13 surgeons
which is very diverse. Furthermore, the standard deviation
of duration for phase “Gallbladder dissection” is 551s. Each
video may not have all phases and there is no obvious prior
between two phases.

2) Evaluation Metrics: We employ four commonly-used
metrics, i.e., accuracy (AC), precision (PR), recall (RE),
and Jaccard (JA) to evaluate the phase prediction accuracy.
AC represents a video-level evaluation, which is defined as
the percentage of correctly classified frames in the entire
video. Due to the imbalanced phases presented in videos,
PR, RE, and JA refer to the phase-level evaluation, which
is evaluated within each phase and then averaged over all
the phases. Specifically, we first compute PR, RE and JA of
each phase by |GT ∩P|

|P| , |GT ∩P|
|GT | and |GT ∩P|

|GT ∪P| , where GT and
P refer to the ground-truth and prediction set, respectively.
Then, we obtain the mean and the standard deviation of these
scores over all phases and obtain the performance of the entire
video. The evaluation protocols are the same with previous
methods [5], [7], [8], [19], [22].

3) Implementation Details: The model is built with
Pytorch [52] and is trained by 1 NVIDIA 3090 GPU. We use
Adam [53] optimizer with the learning rate of 5 × 10−4,
decayed by 30 epochs, and The model is totally trained for
100 epochs. We select the model with the highest performance
on the validation, and reports its results on the test set. The
number heads of segment-frame attention Nhead is set to 4 and
the positional encoding is learned, due to the variant duration
of videos. In the frame-wise feature encoder, the number of the
residual causal dilated temporal convolution layers (RCDL) is
set to 11. In the segment-level hierarchical network, we set the
number of RCDL to be 10. The dimension of the features, i.e.,
D, is set to 64. We use the max-pooling as the temporal fusion
layer, and we will evaluate the effect of different methods, e.g.,
average-pooling or convolutions in Section IV-C.4. We set the
sizes of the kernel and the stride k of the temporal fusion layers
are both set to 7, which achieves the best performance. There
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TABLE I
COMPARISONS WITH THE STATE-OF-THE-ARTS ON M2CAI16 DATASET

TABLE II
COMPARISONS WITH THE STATE-OF-THE-ARTS ON

CHOLEC80 DATASET

is no overlapping when generating the segment-level features
to avoid the same segment contains the frames from different
phases. The ablation study of k is conducted in Section IV-C.4.
We set α and β to be 1 for both M2CAI16 and Cholec80, the
detailed analysis is shown in Fig. 7.

B. Comparison With the State-of-the-Arts

As shown in Table I and Table II, we compare the
proposed SAHC with the state-of-the-art approaches on the
M2CAI16 and Cholec80 dataset, including PhaseNet [50],
SV-RCNet [19], OHFM [40], TMRNet [5], Trans-SVNet [6],
TeCNO [7]. Note that “ours” in Table I and Table II indicate
the model described in Fig. 2, i.e., using three scales with
the segment-frame attention, and the implementation of the
temporal fusion layer is max-pooling. Our method achieves
4.8% and 3.0% improvements over the prior state-of-the-arts
on the M2CAI16 dataset and the Cholec80 dataset, respec-
tively. Notably, the improvements of our method are more
significant in M2CAI16 than in Cholec80. This is because
M2CAI16 contains more ambiguous frames, as shown in
Fig. 1(b), demonstrating the effectiveness of our method to
address the main challenge in surgical video recognition.

As described in Section IV-A, higher accuracy represents
higher frame-level performance, while higher precision, recall,
and Jaccard indicates higher phase-level accuracy. Since the
imbalanced phases shown in videos, the phase-level perfor-
mance is more reasonable for surgical video phase recognition.
Among three phase-level metrics, compared with precision
( |GT ∩P|

|P| ) and recall ( |GT∩P|
|GT | ), Jaccard ( |GT ∩P|

|GT ∪P| ) measures how
close the predictions of phase set to the ground-truth set are,
which is more accurate and stricter. From Table I and Table II,
we find that our method can achieve higher improvement of
Jaccard than other metrics, which indicates that our model
can produce less misclassification prediction. As shown
in Fig. 8(c). “GT” indicates ground-truth, “Base” refers to
the baseline model. The predictions of the baseline and our
method have the similar Accuracy score. Compared to the

TABLE III
ABLATION STUDY ON THE SEGMENT-LEVEL INFORMATION AND THE

HIERARCHICAL CONSISTENCY NETWORK ON M2CAI16 DATASET

baseline, the prediction of our method shows a higher Jaccard
score, demonstrating that our model has a good capacity in
refining erroneous predictions caused by ambiguous frames
within a surgical phase.

C. Ablation Study

We ablate the proposed SAHC to evaluate the effective-
ness of each component and analyze why they work. Our
baseline model is the network in Fig. 2 without generat-
ing segment-level information and hierarchical segment-frame
attention, denoted as “Base” for simplification. In other words,
all output of the baseline model is at the same temporal
scale, i.e., frame-level. Note that all models in this section
are optimized and trained on the training dataset with corre-
sponding losses independently.

1) Effect of Learning With Segment-Level Semantics: In this
ablation study, we prove that high-level segment feature out-
performs than the frame-level one. As shown in Fig. 5, the
performance of the model trained with segments, i.e., “3-scale”
and “5-scale”, outperforms that of the model trained with
frames, i.e., “1-scale”, on both four metrics.

2) Hierarchical Segment Information: Table III shows the
importance of the segment-level information and the hierarchi-
cal consistency network on M2CAI16. {a, b, c} indicates the
consistency with a, b and c. Compared “Base” and “{F1}”,
it is clear that the segment-level prediction can improve the
performance from 87.1% to 87.8% on accuracy. We also find
that the hierarchical consistency between segments and frames
can achieve considerable improvements. For example, with
an additional scale of segment, e.g., F2, the model achieves
1.5% improvements in terms of accuracy. With three-scale
segments, the model reaches the best performance, i.e., 90.2%
accuracy. More scales of segments are not feasible in our
dataset since the temporal size at F3 is too small to be
downsampled. More specifically, the average length of training
videos in M2CAI16 is 2502. After three times downsampling
with k = 11, the length of the final feature is only 1.8, which
is too small to cover whole phases in the video. Note that
the number of phases in a video is generally from 3 to 6.
Furthermore, in order to prove that the improvement comes
from the proposed hierarchical segment information, we also
compare the number of parameters, computation cost and
running time of our method with that of the baseline model,
which is reported in Table IV. “Param” indicates the number of
parameters. It is clear that our proposed method outperforms
the baseline model with a clear margin, i.e., 4.7%, while
having the same number of parameters, i.e., 26.8M. Compared
with the baseline, our model would bring extra 0.23G FLOPS.
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Fig. 6. (a) Attention weight of the segment-frame attention (SFA) module. The horizontal axis represents the frame features, and the vertical axis
represents the segment features. In this figure, there are a total of 12 frames (i.e., {fi}12

i =1) from four different categories of phases. Different colors
indicate different phases, e.g., {fi}3i =1 belong to the first phase (the blue one). The segment-level features (triangles with different colors) are generated
by feeding three frames into SFE (defined in Section III-B.1), i.e., Si = SFE({f3∗i −2, f3∗i −1, f3∗i}). It is clear that the segment representations show
the high similarity with the frame ones that sharing the same phase class. (b) The cosine similarity matrices of features of frames. The horizontal
and vertical axis are both represent the frame features. The features in the same phase become more similar after the refinement of our method.
The bi-direction arrows with different colors indicate the different phases.

TABLE IV
COMPARISON OF NUMBER OF PARAMETERS, COMPUTATION COST AND

RUNNING TIME OF DIFFERENT MODELS. “PARAM” INDICATES THE

NUMBER OF PARAMETERS. “W/O SFA” INDICATES OUR

SEGMENT-LEVEL MODEL WITHOUT USING SFA

TABLE V
ABLATION STUDY ON THE HIERARCHICAL SEGMENT-FRAME

ATTENTION (SFA) ON M2CAI16

Furthermore, the running time of training/inference of our
model is 0.31s for each video, only bringing extra 0.04s
compared with the baseline model.

3) Segment-Frame Attention (SFA) Module: Table V shows
the effectiveness of the hierarchical segment-frame atten-
tion (SFA) on M2CAI16 dataset. {F1

pos, F2
pos, F3

pos} indicates
SFA module between level 0 and 1, level 0 and 2, level
0 and 3, respectively. From comparison of “Segment w/o
SFA ”and “{F1

pos}”, we can observe that using SFA between
frames and one level of segment, the performance can achieve
0.8% improvement in terms of accuracy. Moreover, using SFA
between frames and hierarchical segments can achieve better
performance, demonstrating the effectiveness of the proposed
hierarchical network and SFA.

To explore how segment-level information helps rectify
erroneous predictions, we show the temporal attention weight

TABLE VI
COMPARISON WITH THE PERFORMANCE OF SFE WITH DIFFERENT

TEMPORAL FUSION LAYERS ON M2CAI16. “CONV”, “MP” AND “AP”
INDICATE CONVOLUTION, MAX-POOLING AND

AVERAGE-POOLING RESPECTIVELY

of SFA in Fig. 6(a). Clearly, each high-level segment feature
focuses on its neighboring frames, i.e., the segment repre-
sentations show the high similarity with the frame ones that
sharing the same phase class. As a result, the features of
frames (including ambiguous frames) belong to the same
phase will be pulled together and refined to be consistent
with the segment-level features. Fig. 6(b) visualizes the cosine
similarity of pair-wise frames sampled from the test dataset.
Notably, by using SFA, the features of frames from the same
phases would be similar, and vice versa. In other words, with
SFA, our method can better recognize surgical phases. For
example, as shown in the right two heatmaps in Fig. 6(b), the
frames in the same phase, e.g., the purple arrows, are become
more similar when using SFA.

4) Ablation on Parameters:
a) Comparison with different temporal fusion layers: As

shown in Table VI, we ablate the performance of differ-
ent temporal fusion layers, i.e., convolution (Conv), max-
pooling (MP) and average-pooling (AP). Note that in this
ablation study, we just aim to compare the effect of different
temporal fusion layers, and do not use the segment-frame
attention (SFA) module. We find that AP is better than MP
and Conv, e.g., achieving 90.5% accuracy, 0.4% over than MP.
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Fig. 7. Analysis of (a) β and (b) λ on M2CAI16 and Cholec80. We show the results of Accuracy, Precision, Recall and Jaccard of models with
different β and λ.

TABLE VII
ABLATION STUDY ON THE PERFORMANCE OF SFA WITH DIFFERENT

MODELS ON M2CAI16

This is because AP would encourage the overall frames in the
kernel windows to be consistent with the high-level segment
one. Hence, the features of the ambiguous frame would be
pulled together with its corresponding high-level segments.

b) Comparison of SFA with different models: In Table VII,
we compare the performance of SFA with Base and different
temporal fusion layers, i.e., Conv MP and AP. “Conv”, “MP”
and “AP” indicate the convolution, max-pooling and average-
pooling respectively. SFA is not very impressive without the
segment-level information (Base), i.e., only 0.6% improvement
on Base. However, SFA can bring considerable improvement
on the model with segment-level information. For example,
the temporal fusion layer with Conv achieves 91.2% accu-
racy, outperforms 3.5% over the baseline model. The result
demonstrates that SFA can capture the relations between
high-level segments and low-level frames, which can help
refine erroneous predictions in low-level frames. Furthermore,
we also find that use AP as the temporal fusion layer bring
the largest improvement for SFA, compared with Conv and
MP. For instance, we obtain 91.6% accuracy on the temporal
fusion layer with AP, 0.4% and 0.3% improvement over that
with Conv and MP respectively.

c) Comparison with different kernel sizes k: In Table VIII,
we analyze different kernel sizes k (see Eq. 3) in the temporal
fusion layer. 1/{1, 3, 5, 7, 9, 11} indicates that we set k to be
{1, 3, 5, 7, 9, 11} respectively. Note that k = 1 indicates that
the baseline model without the segment-level information. It is
clear that with k > 1, i.e., the segment-level information, the
model achieve significant improvement. We can observe that
too small and too large kernel size would hurt the performance.
This is due to that too small kernel size may extract very local
segment-level information, which can not capture high-level
information to refine the ambiguous frames, i.e., setting k
to 3 only achieves 91.2% accuracy. On the other hand, too
large kernel size may include the frames from different phases
into one high-level segment, leading to mistakes in generating
segments, i.e., setting k to 11 only achieves 91.1% accuracy.

TABLE VIII
COMPARISON WITH DIFFERENT KERNEL SIZES k OF THE TEMPORAL

FUSION LAYER ON M2CAI16

In our experiments, we find that 1/7 is the best reduction rate,
which achieves 91.6% accuracy, 0.4% and 0.1% over that of
1/9 and 1/5 respectively.

d) Analysis on hyper-parameters β and λ: Fig. 7 shows
the model performance with different values of β in Eq. 7
and λ in Eq. 10. β controls the weight of the frame-wise
prediction and the segment-wise prediction. Setting β to
zero indicates the model without the consistency between
predictions of frames and segments, which shows the limited
performance, i.e., only obtaining the accuracy score of 87.7%
on M2CAI16. In the experiments, we find that setting β to
1.0, our method achieves the best performance, i.e., achieving
91.6% accuracy on M2CAI16, 3.9% over that setting β to 0.0.
λ controls the importance of smoothing, which regularizes the
model to predict smoothing results. It is clear that combining
with the smoothing regularization, the model can achieve the
better performance. For example, the accuracy of the model
setting λ to 0.50 outperforms 0.8% over that of the model
without Lsmooth, i.e., λ = 0.00. We find that setting λ to
1.0 achieve the best performance on both M2CAI16 and
Cholec80 datasets, i.e.,91.6% and 91.8% respectively.

D. Qualitative Analysis and Discussion

Fig. 8 shows the qualitative results of our method. We scale
the temporal axes of three videos, i.e., (a)-(c), for better
visualization. As shown in Fig. 8 (a)-(b), our method pre-
dicts higher frame-wise accuracy, especially in the boundaries
between two different phases. Furthermore, we can notice
that “Base” makes many mistakes, i.e., classifying ambiguous
frames within different phases. For example, some frames
within P3 are misclassified into P4 and some ones within
P4 are misclassified into P3, as shown in Fig. 8(b). On the
contrary, our proposed method can predict more robust and
smooth results. Note that our methods predict higher Jaccard
scores as shown in Fig. 8(c). Although the predictions of
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Fig. 8. Prediction results of three video examples from M2CAI16 dataset. “P1-P5” indicates the phase 1 to phase 5. “GT” refers to the ground-truth
and “Base” refers to baseline. The top row and the bottom row in Base and ours are the prediction results and the prediction scores, respectively.
We scale the temporal axes of all videos for better visualization.

the baseline model and ours show the similar frame-wise
accuracy, our methods present much higher phase-wise Jaccard
scores, i.e., more smooth results. From the comparison of
Fig. 8(b) and (c), we can find that our method can solve the
ambiguous prediction inside phases very well.

However, both the baseline model and our method generate
the misalignment boundaries when transits on phase to another
one, as shown in Fig. 8(c). We believe that this may be due
to the noise annotations, since it is difficult to determine
which frame is the precise boundary, and this process is
subjective. In the future, we may use some uncertainty analysis
methods [54]–[57] to alleviate this problem. Furthermore,
in real life, surgeons may sometime have to redo a phase which
leads to more complicated surgical activities than the current
public datasets. In the future, we will collect the surgical
videos by ourselves to develop algorithms for this situation.
Moreover, we will develop a more flexible frame-level module
and design an attention module to capture the relationships
among different or recurrent phases.

V. CONCLUSION

This paper presents a novel segment-attentive hierarchi-
cal consistency network (SAHC) for surgical phase recog-
nition from videos. Unlike previous methods, our key idea
is to explore the segment-level semantics and use it to
refine the erroneous predictions caused by ambiguous low-
level frames. SAHC consists of two innovative modules:
a segment-level hierarchical consistency network to gener-
ate high-level semantic-consistent segments and a segment-
frame attention (SFA) module to better reflect high-level
segment information to low-level frames. Our method achieves
improved estimates of performance on two public surgical
video recognition datasets. Ablation study demonstrates the
effectiveness of the proposed segment-level hierarchical con-
sistency network and SFA module.
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