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Leveraging data-driven self-consistency for
high-fidelity gene expression recovery

Md Tauhidul Islam 1, Jen-Yeu Wang1, Hongyi Ren 2, Xiaomeng Li1,
Masoud Badiei Khuzani1, Shengtian Sang1, Lequan Yu1, Liyue Shen2, Wei Zhao1 &
Lei Xing 1

Single cell RNA sequencing is a promising technique to determine the states of
individual cells and classify novel cell subtypes. In current sequence data
analysis, however, genes with low expressions are omitted, which leads to
inaccurate gene counts and hinders downstream analysis. Recovering these
omitted expression values presents a challenge because of the large size of the
data. Here, we introduce a data-driven gene expression recovery framework,
referred to as self-consistent expression recovery machine (SERM), to impute
the missing expressions. Using a neural network, the technique first learns the
underlying data distribution from a subset of the noisy data. It then recovers
the overall expression data by imposing a self-consistency on the expression
matrix, thus ensuring that the expression levels are similarly distributed in
different parts of the matrix. We show that SERM improves the accuracy of
gene imputation with orders of magnitude enhancement in computational
efficiency in comparison to the state-of-the-art imputation techniques.

Single-cell RNA sequencing (scRNA-seq) has emerged as an effective
tool for a variety of cellular analysis tasks such as quantifying the state
of individual cells1,2, identifying novel cell subtypes3,4, assessing pro-
gressive gene expression (cell trajectory analysis)5–7, performing spa-
tial mapping8,9 and finding differentially expressed genes10,11. Despite
its prevalence in computational biology, due to noise and low tran-
script capture efficiency, the resulting gene expression matrix from
scRNA-seq is typically sparse, which often results in a loss of important
biological information12–14. In the past decade, intense research has
been devoted to address the computational challenges in recovering
omitted gene expressions. The developed techniques can be broadly
divided into three categories15. In the first category, the sparsity of
expression data is modeled using probabilistic theories. SAVER12,
SAVER-X16, bayNorm17, scImpute13, and VIPER18 are the prominent
methods of this group. The second category includes the imputation
methods that utilize averaging/smoothing to recover the expression
values. DrImpute19, MAGIC14, and k-NN smoothing20 are the most
popular techniques of this category. The last category is based on the
reconstruction of data either using deep learning (AutoImpute21,
DCA22, DeepImpute23, SAUCIE24, scScope25, scVI26) or low-rank matrix

assumption (mcImpute27, PBLR28). Overall, the model-based techni-
ques assume a specific model for the expression data, which may limit
their applicability in some practical cases. For example, SAVER
extracts information from correlated genes and employs a penalized
regression model to impute the data. It assumes that the gene
expressions in a cell follow a gamma-Poisson distribution, which may
not be appropriate in many cells, including those with low gene
expression values12. The smoothing-based methods extract informa-
tion from similar cells to impute the expression data. However, the
averaging effect in thesemethodsmay potentially eliminate variability
in gene expressions across cells14. The deep learning-based methods
learn from the data to perform imputation without imposing any
assumption. However, as the deep learning techniques are purely data-
driven, the data imputation process is essentially a complex black-box
operation with limited transparency. Low-rank matrix-based techni-
ques, such as mcImpute, use a matrix completion approach to impute
the data with considerations of both gene-gene and cell-cell relation-
ships. However, in mcImpute, all zero expression values are treated as
dropout events, which may lead to spurious results in some practical
scenarios. Generally, the analytical techniques (model-based,
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smoothing-based, and low-rank matrix-based methods) are not scal-
able to large datasets since the entire dataset must be processed as
a whole.

Here we propose a novel strategy, self-consistent expression
recovery machine (SERM), to recover the missing gene expression
values by enforcing data self-consistency, a unique characteristic of
high-dimensional datasets. In general, the self-consistency in datasets
implies that if two sets of data points arise from similar sources (such

as gene counts in similar cells), they should have similar
distributions29–31. Computationally, SERM first learns the underlying
data distribution (pattern of self-consistency) using deep learning and
then imputes the expression values by ensuring the self-consistency of
the data. The approach leverages a deep learning optimization to
extract the latent representation of the data and reconstruct the
denoised expression values (Fig. 1-step 1). It then uses a curve fitting
technique to learn a probability distribution from a parametric family

Fig. 1 | Workflow of SERM. A subset of the expression matrix is inputted into an
autoencoder network. To learn the distribution function that best describes the
reconstructeddata by the autoencoder, different pdfs are fitted to the histogramof
the reconstructed data. Next, an ROI is selected, and histogram equalization is

performed on that ROI using the learned pdf in the previous step. The ROI then
slides along the x and y direction throughout the expressionmatrix, and histogram
equalization is performed on each ROI. All the regions are then interpolated using
bilinear resampling in the final step to impose global consistency.
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to represent the reconstructed expression values from the optimiza-
tion (Fig. 1-steps 2, 3). Next, a rectangular region of interest (ROI) is
selected within the expression matrix (Fig. 1-step 4) and imputation is
performed based on histogram equalization using the learned prob-
ability distribution (Fig. 1-step 5). The imputation calculation proceeds
progressively, with the ROI shifting along the x- and y-axes of the gene
expression matrix for each window position. This process can be
regarded as a ‘sliding window’ approach (Fig. 1-step 6). In the last step,
all the ROIs are interpolated using bilinear resampling to achieve the
global consistency of the expression values (Fig. 1-step 7, supplemen-
tary Fig. S1). Because of this divide-and-conquer strategy, SERM is
scalable to largedatasets and can impute thedatasetsmuch faster than
other analytical or deep learning-based methods.

We showcase the efficacy of SERMon various benchmark datasets
and demonstrate its superior performance over the existing baseline
methods. Compared to alternative techniques, SERM consistently
achieves significantly better imputation accuracy and speed.
Themethodpromises to substantially improve theway that scRNA-seq
data is processed and utilized in biomedical research.

Results
In this section, wefirst present the imputation results for synthetic and
benchmark gene sequence datasets and show the benefits of SERM in
visualization and clustering applications. In these studies, the perfor-
mance of different imputation methods (MAGIC, mcImpute,

AutoImpute, DeepImpute, SAUCIE, scVI, DCA, and SERM) are mea-
sured in terms of (1) visualization quality, (2) correlation of the impu-
ted data with the reference data, (3) clustering accuracy, (4)
normalized mutual information (NMI)32, and (5) two cluster quality
indices (adjusted Rand (AR)33, and Hubert34). We then show the
superior performance of SERM in analyses of the cell trajectory data-
sets. Here the performance of different methods is assessed by using
(1) trajectory quality, (2) correlation of the imputed data with original
data, and (3) correlation of computed pseudotime from the imputed
data with the ground truth time points. At the end, the capability of
SERM in imputing large genomic datasets (the human cell landscape
and the mouse cell atlas) is demonstrated to show the strong com-
putational ability of SERM.

SERM provides better data recovery and yields improved high
dimensional data visualization and clustering
We first use the Splatter simulator to generate simulated data of 5
classes without dropout35, where each class consists of 500 cells and
1200 genes (see “Methods” for simulation parameters). The dropout-
free data are referred to as the ‘reference data’. We sampled the
reference data following ref. 12 (see “Methods”) at 1% efficiency to
simulate the dropout-affected data (referred to as ‘observed data’).
The histograms of the reference and observed data are shown in the
first and second columns of the first row of Fig. 2a. As a result of the
efficiency loss, the number of zero values in the distribution increases

Fig. 2 | Analysisof simulated scRNA-seqdatawithfive classes.The histogramsof
the reference data, observed data (1% sampling efficiency), and imputed data by
MAGIC, mcImpute, and SERM are shown in the first row of (a). Visualization of
reference, observed, and imputeddata by t-SNE andUMAP are shown in the second
and third rows, respectively. t-SNE and UMAP results from SERM imputed data are
much better in separating the classes, whereas MAGIC degrades the data due to

imputation. The clustering accuracy and cluster quality indices for UMAP visuali-
zations of imputed data from different methods are shown in (b). Data are pre-
sented as mean values +/− standard deviation (SD). Error bars represent the
standard deviation of the indices for n = 1000 different initializations of k-means
clustering. Source data are provided as a Source Data file.
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for the observed data in comparison to the reference data. The his-
tograms of the imputed data from MAGIC, mcImpute, and SERM are
shown in columns 3–5. It is seen that bothMAGIC and SERMare able to
reduce the number of zeros, whereas mcImpute fails to do so. SERM
imputes the zero elements of the data with high accuracy, which is
reflected by the similar number of zeros in the reference and SERM-
imputed data. The superior performance of SERM is also apparent in
the t-SNE and UMAP visualizations of the data imputed by using dif-
ferent methods, as shown in the second and third rows of Fig. 2a. Due
to the dropout effect, t-SNE and UMAP visualizations of the observed
data exhibit classes separated only by small distances with many
inaccurately clustered data points. McImpute result is similar to the
observed data. Some distortions are observed in the visualization of
MAGIC-imputed data. On the other hand, SERM successfully imputes
the data with high-quality visualization (Fig. 2 (5th column)). The
clustering accuracy and cluster quality indices for all the methods are
shown in (b). It is seen that SERM achieves the best result in terms of
these indices. scVI performs better than other techniques
except SERM.

In the next study, we use data from four different scRNA-seq
experiments (cellular taxonomy of the bone marrow stroma in
Homeostasis and leukemia36, classification of cells from mammalian
brains37, data from mouse intestinal epithelium38 and comparison of
engineered 3D neural tissues39). Descriptions of the data can be found
in the “Methods” section. In our analysis, the raw data are filtered by
choosing cells and genes with high expression values to create refer-
ence datasets (see “Methods”). The reference datasets are then sam-
pled at different efficiency following ref. 12 to create observed datasets
and different methods are used to impute the expression values. We
show UMAP visualization of all four datasets imputed by different
techniques in Fig. 3 and Supplementary Fig. S2. The UMAP visualiza-
tions of the reference data are shown in the first column of Fig. 3.
Again, the data classes are better separated in SERM-imputed data as
shown in Fig. 3 (cluster improvement indicated by arrow). Some dis-
tortions are seen in the data visualizations in most cases for MAGIC-
and SAUCIE-imputed data.

Quantitative assessments ofdifferentmethods are shown inFig. 4,
and Supplementary Figs. S3 and S4. For the case of 5% sampling effi-
ciency, SERMprovides a Pearson coefficient better than0.9 formostof
the genes, which is much higher than the results (≤0.4) from most
othermethods. For the case of 0.1% downsampling, SERM recovers the
original expression values with Pearson coefficients of 0.15–0.65,
which are much better than the results from other methods. The
quantitative evaluation of clustering of the data imputed by different
techniques are presented in supplementary Figs. S5–S8, where it is
seen that SERM leads to the best cluster quality indices (accuracy, NMI,
AR, and Hubert).

SERM offers reliable cell trajectory analysis
The following studies demonstrate the quality and accuracy of cell
trajectory analysis enabled by SERM. For example, the recently
developed dimensionality reduction method PHATE40 can accurately
infer cell trajectories from scRNA-seq data. However, the performance
of this method (and other trajectory inference methods) can be
degraded in the presence of technical noise, such as dropouts. SERM
mitigates the effect of dropouts and facilitates inferencemethods such
as PHATE to compute cell trajectories with high fidelity.

The first dataset we consider is acquired by profiling 38,731 cells
from 694 embryos across 12 stages of early zebrafish development2,41.
In our experiments, the rawdata is filtered by choosing cells and genes
with high expression values to create a reference dataset (see “Meth-
ods”). The reference data is then sampled at different efficiencies to
create observed datasets. PHATE visualizations of the reference data,
observed data (sampled at 0.1% efficiency), and the data imputed by
different methods are shown in Fig. 5a and Supplementary Fig. S9. It is

observed that SERM-imputed data yield the best results. The fine
details, such as two paths (indicated by arrows) of transitioning of 8
hpf (hours post fertilization) to 10 and 12 hpf is muchmore obvious in
SERMresults than the observeddataset. Results from thedata imputed
bymost othermethods are somewhat distorted, making it challenging
to find the cell trajectories. We note that scVI and DCA perform better
than SAUCIE and MAGIC in this case.

The second dataset is scRNA-seq data of human Embryonic Stem
(ES) cells differentiated to embryoid bodies (EBs)40,42. The PHATE
embedding of the EB data, reference, observed, and imputed by dif-
ferent methods, are shown in Fig. 5b and supplementary Fig. S9 (a2-e2).
Like the last study, most methods (MAGIC, mcImpute, AutoImpute)
yield somewhat distorted results. PHATE visualizations from SERM-
imputed data show less distortion, and the trajectories can be seen
clearly. Specially, the two paths (indicated by arrows) of transitioning
from time point 2 to 4 and 5 aremuch clearer in SERM-results compared
to the observed data.

To quantify the efficacy of the imputation methods in finding the
cell trajectories, the observed data and imputed data from different
methods are analyzed using monocle7. The Pearson correla-
tion coefficients between the ground truth labels and computed
pseudotimes by monocle are shown in Fig. 5c. It is seen that for zeb-
rafish development dataset, SERM produces consistently higher
Pearson correlation values for all sampling efficiencies. We note that
mcImpute, DeepImpute, and scVI provide comparable results to SERM
for a few cases. The observed data and imputed data from different
methods were also analyzed using TSCAN43 and Slingshot44, and the
results are presented in supplementary Figs. S41 and S42. The Pearson
coefficients between the expression values of the reference and
imputeddata bydifferentmethods are shown in Fig. 6, and the percent
improvements in Pearson coefficients are shown in supplementary
Fig. S10 for the above two datasets. SERM achieves the highest coef-
ficients in all cases. In Fig. 6 (and Fig. 4), it is seen that as the sampling
efficiency increases (reduction of dropout), the performance of most
methods improves. We noticed that the performance of DeepImpute
is, in some cases, better than other methods in the first two sampling
efficiencies (0.1 and 0.2%) with comparable results to SERM. Overall,
Magic and SAUCIE are less accurate in genomic data imputation
compared to other techniques.

SERM is capable of imputing large datasets that are computa-
tionally prohibitive to many existing techniques
The goal here is to demonstrate that SERM can be used to impute
datasets of very large size and complexity. To this end, we analyze two
large-scale datasets: the human cell landscape (HCL) and the mouse
cell atlas (MCA). These two datasets have about 16,403 million data
elements (599,926 cells × 27,341 genes) and 11,665 million data ele-
ments (333,778 cells × 34,947 genes), respectively. The HCL dataset
has 63 unique cell types and 59 unique tissue types, whereas the MCA
dataset has 52 unique cell types and 47 unique tissue types. We found
that none of the traditional analytical methods could impute these
datasets within a week on a personal computer (PC) with an Intel Core
i9 processor and 64GB RAM. The deep learning methods (SAUCIE,
DeepImpute, scVI, and DCA) can analyze the datasets within a
reasonable time.

To benchmark the performance of SERM for these datasets, we
subsampled the raw data by 20-times randomly and analyzed the
subsampled data using different methods (computational time
required for various approaches is added in supplementary Fig. S40).
The results are shown in Fig. 7 for MCA and Fig. 8 for HCL datasets,
respectively. For raw MCA data, it is seen that the data classes are
clustered together and hard to separate. Similar scenarios also occur
for the imputed data for all the methods except SERM and scVI. The
data classes are better separated than the rawdata in scVI calculations,
but the best separation of the data classes is seen in the SERM results.
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DCA and DeepImpute perform relatively better than SAUCIE
and MAGIC. Similar conclusions can be drawn from the results for the
HCL data as shown in Fig. 8. The clustering accuracy and three
other cluster quality indices (NMI, AR, and Hubert) for different
methods are computed and shown in Fig. 9. It is seen that only scVI and
SERM can improve the cluster quality after imputations. SERM
improves all the indices by at least 15% for MCA data compared to the
unimputed data.

Results of the full MCA and HCL datasets for SERM, SAUCIE, and
DeepImpute are shown in Supplementary Figs. S35–S39, where it is
seen that SERM provides much better qualitative and quantitative

performance than other methods. scVI and DCA results are very large
(>100 GB) for these datasets, and downstream analyses (t-SNE visua-
lization and computation of cluster quality indices) are not possible to
perform because of the limitation of the computer memory.

More experiments are performed on scRNA-seq datasets from
different established databases such as IDH-mutant gliomas data
(Figs. S11, S12), single-cell data of pediatric midline gliomas (Figs. S13,
S14), melanoma intra-tumor heterogeneity data (Figs. S15, S16), Div-
Seq data (Figs. S17, S18), intestinal immune cell atlas (Figs. S19–S21),
Tabula Muris (TM) dataset (section 13) and the results are included in
the supplementary. From these studies, we observed that the

Fig. 3 | Low dimensional visualization of imputed data from various methods.
UMAP results of the reference data, observed data, imputed data from MAGIC,
mcImpute, and SERM for a cellular taxonomy, b mammalian brain, c mouse
intestinal epithelium, and d 3D neural tissue data. Cellular taxonomy data was

sampled at 10% efficiency, and the other three datasets were sampled at 0.1%
efficiency. All the classes are better visualized in the SERM imputation. MAGIC and
mcImpute distort the data in many cases, whereas SERM retains the consistency of
the data intact in all cases. Source data are provided as a Source Data file.
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Fig. 4 | Pearson coefficient between the reference and imputed data by eight
different techniques for different datasets (cellular taxonomy-row 1, mam-
malian brain-row 2, mouse intestinal epithelium-row 3, and 3D neural tissue
data-4th row). The sampling efficiency (0.1–10%) to create the observed data are

shown in x-axis. The center of the violin (denoted with a white circle) denotes the
median value, and the spread of the violin denotes the standard deviation of the
coefficient values across different cells. Source data are provided as a Source
Data file.
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performance of MAGIC, DeepImpute, and mcImpute are comparable
to SERM only in a few cases.

SERM is computationally much more efficient than other techni-
ques. For example, SERM can analyze data with 0.6 million cells and
30,000 genes in <18min on the PC mentioned earlier. In contrast,
MAGIC, mcImpute, AutoImpute, and DeepImpute cannot complete
the data analysis within 3 days. The computational speeds of different
techniques for different data sizes are reported in the Supplementary
Fig. S22, Tables 1 and 2. The unprecedented enhancement in compu-
tational efficiency arises from SERM using a fast histogram equaliza-
tion operation to impute the data. Thus, SERM does not need
computationally intensive calculations, such as determining the simi-
larity between cells or genes. We note that SAUCIE is computationally
more efficient than other methods except SERM.

Discussion
Genomic sequencing techniques are now increasingly focused on the
characterization of single cells. For many practical applications, such
as data dimensionality reduction, visualization, and cellular spatial and
temporal mapping, rectifying the expression values via reliable
imputation is a prerequisite. In reality, however, the existing gene
imputation methods suffer from several drawbacks: (1) a specific
model for gene expression values is often assumed, which may not
reflect the actual data distribution inmany practical cases; (2) the data

is imputed based on the similarity among a few cells or genes, which is
susceptible to errors as the global relationship among the cells and
genes is not leveraged; (3) all zero expression values are often viewed
asdropout events,whichmaynotbe accurate inpractical settings; and
(4) a priori information about the data is required to tune the hyper-
parameters of some methods. The proposed SERM mitigates these
limitations through an effective learning strategy and significantly
improves the imputation accuracy. It should be noted that SERM also
assumes specific distributions for the expression data (such as expo-
nential, Gaussian, and Rayleigh). However, the distribution parameters
are learned in SERM, which ensures proper model adaptation to
the data.

Data distortion, a condition when dropout positions in an
expression matrix are filled with inaccurate values, is one of the main
concerns in gene imputation. Preventing distortion is critically needed
in applications like trajectorymapping, where the accurate position of
each cell is required to find the trajectory continuum. In our study, we
found that most methods, except SERM, distorted the data in many
cases and could not reliably uncover the underlying biological infor-
mation. With the learning of the data distribution, SERM shows
remarkable performance in imputing the gene expressions for trajec-
tory inference, as revealed in our extensive experiments. The techni-
que consistently outperforms the existing methods for low and high
dropouts.

Fig. 5 | Analysis of cell trajectory in imputed data from different methods.
PHATE results from the reference data (first column), observed data (second col-
umn), imputed data from MAGIC, mcImpute, and SERM (columns 3–5) for
a zebrafish development data and b EB differentiation data. The observed data
were created by sampling the reference data at 0.1% efficiency for both datasets. All
the trajectories are better visualized in SERM imputed data. MAGIC and mcImpute
distort the data in both cases, whereas SERM retains the consistency of the data

intact in both cases. The colorbar for a denotes the hpf (hours post fertilization).
The colorbar of b represents 1-(0–3 days), 2- (6–9 days), 3- (12–15 days), 4-
(18–21 days) and 5- (24–27 days)). Pearson coefficient between the pseudotime
estimated by monocle from the imputed data and the data labels for all the
methods are shown for zebrafish development data (left), and EB differentiation
data (right) in c. Source data are provided as a Source Data file.
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In SERM, a data-driven histogram equalization is performed on
each ROI to impute the gene expression values. Although histogram
equalization is a popular technique in image processing for contrast
enhancement, the assumption of a gene expressionmatrix as an image
with ordered data elements is not necessary here. An implicit
assumption in our formulation is that the coverage of ROI is suffi-
ciently large so that the captured data distribution in the ROI is
representative of the entire matrix. As only the distribution of
expression values in a sufficiently large ROI is considered, the order of
rows and columns is generally not important. In other words, if a gene
(column) or a cell (row) is interchanged with another one, the dis-
tribution of the gene expression values and the resultant imputation
should not change much. To ensure unbiased data distribution in
different parts of the matrix, an optional step in which the columns/
rows can be permuted randomly is included in our implementation.
However, in most cases, this randomization step is unnecessary as the
genomic data are generally not ordered. To illustrate this, we com-
puted the correlation values from SERM imputed data for more than
twenty expression datasets with 1000 different random alterations of
cells and genes (Supplementary Fig. S29 shows an example for one of
the datasets). We found that the correlation values remain almost
identical (Supplementary Fig. S29), showing that SERM is robust
against random changes in the positions of the genes and cells. We
have also shown examples, where the dataset is arranged based on
cell type or only one type of cell is considered (Supplementary
Figs. S25 and S26). However, even in these exceptional cases, the
accuracy of SERM drops by only <2% and the method can still be
employed for high-performance gene imputation. The reason behind

this is that, while the distribution of gene expression changes from cell
type to cell type, the change is not very significant (see Supplementary
Fig. S27, where we show the gene expression distribution for ten dif-
ferent cell types of a dataset). It is seen from Supplementary Fig. S27
that, in all cell types, the distribution of gene expression has a similar
curve with slight differences in variance and mean.

We have considered three analytical distributions (Gaussian,
Rayleigh, and exponential) to model the data in SERM. Other dis-
tributions can also be included in SERM (see Python/Matlab codes of
SERM). One can also use empirical distribution to characterize the
data. In Supplementary Fig. S28, we have included SERM-imputed
results for one dataset when the empirical distribution is used in place
of the analyticaldistributions. It is seen that the SERMwith an empirical
distribution performs inferiorly to that with learned analytical dis-
tributions. For ultra-large data (e.g., on a scale of millions), the
empirical distribution may characterize the data better and lead to
improved performance. In SERM, we have used adaptive histogram
equalization to perform the histogram correction of the dropout-
affected data. However, other histogrammatching techniques, such as
quantile normalization45 can also be used. We have added results of
SERM with quantile normalization for the cellular taxonomy dataset,
where it is seen that the results degrade. Theperformancedegradation
is because of the inferior performance of quantile normalization
compared to adaptive histogram equalization46.

Batch-effect correction plays a vital role in the scRNA-seq data
analysis pipeline. A few methods that can perform both batch-effect
correction and data imputation in the same calculation process, such
as scVI26 and CarDEC47, have been reported. Although batch effects are

Fig. 6 | Pearson coefficients between the imputed and reference data for all the
methods are shown for zebrafish development data (first row), and EB differ-
entiation data (second row). The sampling efficiency (0.1–10%) to create the
observed data are shown in x-axis. The center of the violin (denoted with white

circle) denotes the median value and the spread of the violin denotes the standard
deviation of the coefficient values across different cells. Source data are provided
as a Source Data file.
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not considered explicitly in the formulation, SERM is generally less
susceptible to data obtained using different technologies or protocols
(see Supplementary Figs. S44–S46 for benchmarking of SERM on
datasets with batch-effect). This is because SERM enforces a learned
distribution from a single set of data (e.g., a batch of data) to all the
data from different batches. Even if the data of different batches have
different distributions, SERM forces them to follow the learned dis-
tribution, alleviating potential bias and artifacts (see “Methods”
section).

As discussed in the introduction, a deep learningmodel generally
proceeds in a black-box fashion with little control given to the user. In
SERM, only the data distribution is learned via deep learning, and the
actual imputation is performed by using an analytical histogram
matching technique. Thus, the method is more transparent than tra-
ditional deep learning-based imputation techniques. We note that, in
SERM, the distribution can also be preset by the user, which makes it
easy for a user to investigate the effect of the learned distribution on
the imputation. This also empowers the user to examine the results in

Fig. 7 | t-SNE visualizations of the raw and imputed data by eight different methods for the MCA data. Source data are provided as a Source Data file.
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depth when a question arises about the modeling, which is not pos-
sible in other deep learning-based imputation techniques.

In DCA, SAUCIE or other encoder-based imputations, the objec-
tive function is based on reconstructing the original data from the
latent representation. The approach affords a unique way to denoise
the data. However, the methods do not put any constraint on the
distribution of the data. By leveraging an analytical distribution to
impute the values, SERM denoises the data and imposes natural gui-
dance on the data distribution, leading to substantially improved

imputation accuracy and efficiency. While it may be possible to create
an autoencoder with constraints on the data distribution, computa-
tionally, the approach would be much less efficient than SERM, espe-
cially when the data size increases.

SERM is scalable to data size and dimensionality, making it pos-
sible to impute large data with high computational efficiency. The
scalability of SERM has been demonstrated by imputing two large
datasets (HCL andMCA). In the visualizations of projecteddata in a low
dimension, many new cell clusters are found after SERM imputation.

Fig. 8 | t-SNE visualizations of the raw and imputed data by eight different methods for the HCL data. Source data are provided as a Source Data file.
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Thus, using SERM, it may be possible to discover novel biological
information, such as cell or gene types, from large scRNA-seq data.

In the evaluation of SERM, the reference data created by choosing
only the cells and genes with high expressions provides a dropout-free
representation. The observed data is created from the reference data
by simulating efficiency loss that introduces zeros and represents the
dropout-affected data. Different dropout rates were simulated by
varying the parameters of Gamma distribution. The applications of
SERM on a large number of datasets with various dropout rates show
its broad applicability. Different methods are followed in single cell
research community to create the dropout-affected data12,17,18. To
prove the versatility of SERM in single-cell imputation, we have added
Supplementary Figs. S51 and S52 showing the performance of SERM
for three different techniques of creating the dropout-affected
data12,17,18. It is seen that, in all cases, SERM can improve the data
quality (which no other method can).

We evaluated SERM on seventeen different scRNA-seq datasets
from different biological systems and measurement technologies. In
all cases, SERM accurately recovers data clusters (Figs. 2–4, 7–9, Sup-
plementary Figs. S49, S50), cell developmental trajectories, and state
transitions (Figs. 5, 6). The superior performance of SERM across all
these datasets demonstrates its versatility in genetic engineering and
computational biology. Generally, the issue of gene expression impu-
tation here is a special case ofmissing data ormissing value problems,

which can occur in almost all measurementmodalities. In practice, the
strategy of dealing with the problem can significantly affect the con-
clusions to be drawn from the data48–50. Since SERM is based on
learning from the data, it is not restricted to a specific type of data. The
method can thus adapt to new data easily and provides a broadly
applicable strategy for missing data recovery across different dis-
ciplines. For this reason, SERM is equally applicable for both raw and
normalized (using library size, logarithm, or other nonlinear opera-
tions) scRNA-seq datasets (see Supplementary Fig. S24 for an exam-
ple). In addition to the missing value imputation, we emphasize that
theproposedSERMalsoprovides aneffective solution indenoising the
data, as demonstrated in Figs. 2–9.

In our analyses, we observed thatMAGIC distorts the t-SNE/UMAP
visualizations of the data in many cases. We emphasize that this may
not imply the bad quality of the MAGIC imputation, as the distortions
may also arise from the visualization tools. Rather, we found that
MAGIC performs better thanmany techniques in terms of quantitative
indices such as clustering accuracy, NMI, and cluster quality indices.
This phenomenon is corroborated by an earlier study by Hou et al.15.

Despite its success, SERM is not without limitations. In particular,
SERM learns the gene expression model from a small fraction of the
data. This poses a challenge in dealing with small genomic datasets, as
the estimated distribution in SERM may diverge from the actual data
distribution, leading to inaccurate imputation values.

Fig. 9 | Accuracy and three cluster quality indices (NMI, AR, and Hubert) computed from t-SNE results of the raw and imputed data by different methods for the
MCA and HCL data. Source data are provided as a Source Data file.
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In summary,we haveproposed anovel computational strategy for
gene expression recovery. The technique can impute gene expression
data of different levels of dropout rate with unprecedented accuracy,
reliability, and consistency. Going beyond traditional imputation
techniques, SERM learns the data distribution and applies the knowl-
edge to the subsequent calculation under the condition of self-
consistency. Apart from the computational efficiency and scalability,
SERM substantially improves the performance of the imputation pro-
cess with augmented interpretability in comparison to the existing
deep learning techniques. As SERM is data-driven and can adjust to any
data type, we envision that SERMwill play an important role in various
biomedical and biocomputational applications.

Methods
The SERM strategy involves the following major steps:
1. Modeling (Fig. 1 steps 1–3): The goal of this step is to determine

the distribution that best represents the gene expression data.
First, a subset of the original dataset is defined. This data subset
is transformed into a denoised version of itself via an unsu-
pervised deep learning technique that performs compression
and decompression of the data. This process removes noise and
retains the essential latent features of the data, thus outputting a
denoised representation of the original data. A histogram of the
denoised expression values is computed, and distribution fitting
is performed on the histogram to output the learned pdf.

2. Imputation (Fig. 1 steps 4–6): The values in the gene expression
matrix are systematically imputed based on a sliding window. A
rectangular ROI is defined with a width and height smaller than
the width and height of the expressionmatrix. The ROI serves as a
window into the matrix—only the values within the window are
manipulated in a single instance. The sliding parameters, includ-
ing the ROI and step sizes, are then defined to determine the
distance that the window shifts for each iteration. For each win-
dow position, a histogram of the values in the window is com-
puted. This histogram is equalized to the histogram of the
denoised expression values found in the previous step. The new
window values found through histogram equalization substitute
for the original values. The window continues sliding until the
entire matrix is imputed.

3. Consistency (Fig. 1 step 7): If the sliding distance of the window is
smaller than the window size, then the values in each window
overlap with those in the adjacent windows. Cross-window
consistency is automatically imposed for this choice of para-
meters. If the sliding distance is equal to the window size,
adjacent windows do not overlap, and the values in each window
are imputed independently from the rest of the matrix. Bilinear
resampling is performed to impose global consistency across all
the independent windows for this case.

The details of each step of SERM are discussed below.

Learning data distribution
Deep neural networks (DNNs) have shown promising results in classi-
fying biomedical data51. Autoencoders52 (consists of an encoder and a
decoder) are a class of DNNs for data compression in which low
dimensional latent features are learned from high dimensional data. It
learns only the essential latent features while ignoring non-essential
sources of variation such as randomnoise22. Therefore, the compressed
latent data of the network is a representation of the high dimensional
ambientdata space in lowerdimensionality andcaptures theunderlying
true data manifold. Thus, when the autoencoder reconstructs the high-
dimensional data, it represents the ideal version of the high-
dimensional denoised data22. We use a sub-matrix (Ss of size qs×ms)
of the expression data (S of size q×m) as the input to the autoencoder
network to learn the distribution of the denoised expression data.

Denoising via auto-encoding. The deep learning architecture (auto-
encoder) used in SERMconsists of twoparts, an encoder and a decoder.
The encoder of the network takes the input xd 2 Rms (xd is a row of Ss)
and maps it to a latent space h 2 RP , where ms> P and h is defined as

h= σðWxd +bÞ: ð1Þ

Here, σ is an element-wise activation function which can be a linear or
nonlinear (such as sigmoid) function. W and b are the weight matrix
and bias vector, respectively. The decoder of the network maps the
latent variable h to the reconstructed data x0

d. The equation for x0
d can

be written as

x0
d = σ

0ðW0h+b0Þ: ð2Þ

Here σ0,W0 and b0 are the activation function, weight matrix, and bias
vector for the decoder. In the training phase, the weights and biases
are initialized randomly and updated iteratively using the back-
propagation technique. During training the network, the reconstruc-
tion error (mean squared error) is minimized. In particular, the mean
squared error (also called loss) can be expressed as

Lðxd,x
0
dÞ= k xd � x0

dk2: ð3Þ

x0
d are the rows of reconstructed outputmatrix So, which is of the same

size as Ss.

Histogram computation. Consider the gene expression matrix
So = ½sij � 2 Rqs ×ms , where qs is the number of cells andms is the number
of genes. For each expression value, the number of elements with that
value in So is counted. The collection of these counts for all the
expression values is referred to as the histogram of that region. This
function is an empirical estimate of the expression density function.
Let NSo

and LSo denotes the number of matrix elements and possible
expression values in So. Furthermore, we define the normalized his-
togram associated with the possible gene expression values in So as
follows

pSo
ðnÞ= NSo

ðnÞ
NSo

, n=0,1,2, � � � ,LSo � 1, ð4Þ

whereNSo
ðnÞ is the number of elements in the ROI with the gene count

n such that NSo
=
PLSo�1

n=0 NSo
ðnÞ.

Curve fitting. After applying the histogram equalization, we fit dif-
ferent probability distribution functions (PDF) to pSo

. Specifically, we
consider

f g ðxÞ=
1

λ
ffiffiffiffi
π

p e�ðxλÞ
2

, ð5Þ

f r ðxÞ=
2x

λ2
e�ðxλÞ

2

, ð6Þ

f eðxÞ= λe�λx , ð7Þ

where fg, fr and fedenoteGaussian, Rayleigh and exponential PDFs. The
PDF with parameter λ that results in minimum root mean square
(RMSE) is chosen for next steps of SERM. We note that although we
used three PDFs in our analysis, other PDFs (such as log-normal,
student-t and gamma) can be easily incorporated into SERM
implementation (see implementation codes). Below we describe the
mathematical analysis for histogram equalization of exponential PDF.
Analysis for other PDFs can be performed in a similar manner.
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ROI selection and histogram equalization
We divide the expression matrix S is divided into N ≥ 4 ROIs, which
we denote by Si, i = 1, 2,⋯ ,N. Let NSi

and LSi denotes the number of
matrix elements and possible expression values, in each ROI Si,
respectively. Furthermore, we define the normalized histogram
associated with the possible gene expression values in the ROI Si as
follows

pSi
ðnÞ= NSi

ðnÞ
NSi

, n=0, 1, 2, � � � ,LSi � 1, ð8Þ

whereNSi
ðnÞ is the number of elements in the ROI with the gene count

n such that NSi
=
PLSi�1

n=0 NSi
ðnÞ. The corresponding cumulative dis-

tribution function (CDF), is given by

FSi
ðnÞ= 1

NSi

Xn
k =0

pSi
ðkÞ, n=0, 1, 2, . . . ,LSi � 1: ð9Þ

Adaptive equalization of histogram. The goal of the histogram
adaptive equalization is to find a transformation for the expression
values such that the transformed CDF is approximated by the CDF of
f(x), where f(x) can be fg(x), fr(x) or fe(x). As example, the CDF of an
exponential distribution can be written as

FðtÞ= 1� e�λt , t ≥0

0, t<0

(
ð10Þ

where λ denotes the decay parameter. SERM uses the transformation
TSi

: f0,1, � � � ,LSi � 1g ! f0,1, � � � ,LSi � 1g for each ROI to map the
expression values to their new values. In particular, consider trans-
forming the expression counts by

TSi
ðkÞ= � 1

λ
ln 1� FSi

ðkÞ
� �� �

, ð11Þ

where the floor function ⌊x⌋ is the biggest integer not exceeding x. The
map TSi

ðkÞ is then applied to each expression value in the ROI Si.
The main intuition behind this transformation comes from the

inverse sampling method. In particular, let X denotes continuous
randomvariableswhoseCDF is strictly increasingon thepossible value
on ½0,LSi � 1� with densities pX and pY, respectively. Consider the
transformation

Y =T0ðX Þ= ðLSi � 1Þ
Z X

0
pX ðuÞdu: ð12Þ

Then, Y has the uniformdistribution, i.e., Y ∼Uniform½0,LSi � 1�. To see
this note that

PfY ≤ yg=PfðLSi � 1ÞFX ðX Þ≤ yg

=P X ≤ F�1
X

y
LSi � 1

 !( )

= FX F�1
X

y
LSi � 1

 ! !
=

y
LSi � 1

:

ð13Þ

Furthermore, using the inverse transformsampling technique, the
random variable

Z =T 1ðX Þ= � 1
λ
lnð1� Y=ðLSi � 1ÞÞ, Y ∼Uniform½0,LSi � 1�, ð14Þ

has the exponential distribution, i.e., Z ~ F(t). Combining the transfor-
mations T0 and T1, we conclude that

Z =T 1ðT0ðX ÞÞ= � 1
λ
ln 1�

Z X

0
pX ðuÞdu

� �
, ð15Þ

has the desired exponential distribution. Now, the transformation TSi
defined in Eq. (11) is an inverse sampling method for the discrete ran-
dom variable similar to the continuous transformation T1∘T0. Similar
analytical equations to Eqs. (10)–(15) can be derived for Gaussian and
Rayleigh distributions.

Sliding ROI
The ROI is slided throughout the whole expression matrix and gene
imputation is performed at each ROI to obtain the resulting imputed
gene expression matrix from SERM.

Resampling for patch consistency
In the previous step, the imputation is performed on each ROI by
matching the transformed clipped histogram of each time with a dis-
tribution. We now incorporate the histograms of different ROIs into a
consistent framework by applying a bilinear resampling. Let bS= ½bsij � 2
Rq×m denotes the gene expressionmatrix after the imputationof each
ROI via the histogram clipping and equalization step.We subsequently
resample each expression value bsij using the values of lateral elements
Q11 =bsði�1Þðj�1Þ, Q12 =bsði�1Þðj + 1Þ, Q22 =bsði+ 1Þðj + 1Þ, and Q21 =bsði + 1Þðj�1Þ. In par-
ticular, let �sij denotes the resampled value which is computed by the
following sample average

�sij =
1
4
bsði�1Þðj�1Þ +bsði�1Þðj + 1Þ +bsði + 1Þðj + 1Þ +bsði+ 1Þðj�1Þ
� �

: ð16Þ

For the boundary elements of the matrix bsi1, bsiq, bs1j , and bsnj the above
formula is used in conjunction with the zero padding of the matrixbsi0 =bs0j =bsiðq+ 1Þ =bsðn+ 1Þj =0 for all i∈ {1, 2,⋯ , q} and j∈ {1, 2,⋯ ,m}.
The interpolation formula in Eq. (16) can be dervied via the dis-
cretization of the bilinear interpolation of continuous functions of two
variables. The resulting matrix �S= ½�sij � 2 Rq×m from resampling in Eq.
(16) yields the desired imputed matrix.

Simulation procedures
All the simulated data were created in R language using Splatter
simulator. The method of simulation was set to ‘groups’ and the
probability of each of the five groups was set to 0.2. All other simula-
tion parameters were set to default values.

Implementation and parameter settings
Python and Matlab (MathWorks Inc., Natick, MA, USA) implementa-
tions of the SERM technique were performed. Although the whole
dataset can be used for learning the distribution of denoised data, to
reduce the computational burden, 2000 data points were randomly
selected (see supplementary Table 3, Figs. S30–S32 for detailed ana-
lysis). For all the analyses, a three-layer (input, latent, output) network
was used in the deep learning step of SERM. A linear activation func-
tion was used as the decoder transfer function and a logistic sigmoid
function as the encoder transfer function52. The value of P (dimension
of latent space) in the encoder-decoder network was set to 2. L2 and
sparse regularizers were used with parameter values of 0.05 and 0.9.
The learning rate was fixed at 1e − 5, and the max epoch was set to 20
with a batch size of 64. The adam optimizer was used to train the
model. The neuron values were initialized randomly from a uniform
distribution in the range of 0–1.

The ‘Trust-Region’ algorithmwas used for curve fitting withmean
square error as the cost function. For Gaussian and Rayleigh equation
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fitting, the starting point, lower limit, and upper limits of λ were 0.2,
0.01, and 1, respectively. For exponential equation fitting, the starting
point, lower limit, and upper limits of λwere 5, 5, and 20, respectively.
These values were chosen based on fitting the equations to ideal data
generated using the Splatter simulator. In adaptive histogram equal-
ization of SERM, thewindow lengthwas set to half of thematrix length,
and the window height was set to half of the matrix height (see sup-
plementary Fig. S23 for results of SERM with quantile normalization).
The x- and y-sliding parameterswere set to the length andheight of the
window. We add analyses of different ROI sizes and overlaps in Sup-
plementary Figs. S33 and S34, where it is seen that SERM is very robust
to change of these parameters and provide accurate results for a large
range of their values. For HCL and MCA datasets, the whole datasets
were divided into 48 (24 by 2) and 28 (14 by 2), respectively, for SERM-
imputation. For creating the histograms, we set the number of bins
equal to 100.

In t-SNE and UMAP visualizations of data from all the methods in
Fig. 2, the first 50 principal components (PCs) were used. In visuali-
zations of Fig. 3, the first 20 PCs were used. For zebrafish data, 100 PCs
and EB data, 50 PCs were used in PHATE for creating the visualizations
in Fig. 5. The first 500 PCs were used to create the t-SNE visualizations
of HCL and MCA datasets (Figs. 7 and 8).

UMAP implementation from the original authors was used with
default parameters53. PHATE was used with default parameters: num-
ber of (output) embedding dimensions equal to 2, number of nearest
neighbors equal to 5, an alpha value equal to 40, automatically
determined the optimal number of diffusion steps (t), maximum t
equal to 40, number of principal components equal to 100, ‘metric
MDS’ as the method of multidimensional scaling, euclidean as
the distance function, log as the method of computing the PHATE
potential distance, gamma value equal to 0.5, epsilon value equal to
1e − 7, number of landmarks equal to 2000, and number of singular
vectors for spectral clustering equal to 100. Monocle, Slingshot, and
TSCAN methods were applied to the datasets using default settings
provided by the authors. The computational speed of SERM imple-
mented in Matlab was used to benchmark its computational efficiency
against other methods.

SERM on data from different batches
If a dataset consists of data from different batches, data from any of
the batches can be used as the reference. It should be noted that
setting one batch-data as reference is a common practice in batch-
effect correction techniques54–56. Indeed, for the examples presented
in Supplementary section 11, we found that the results of SERM
imputation change little when a different batch is used as the refer-
ence. The data distribution in SERM is learned from the reference
batch and then applied to all batches for data imputation. In this case,
the randomization of cells and genes, as mentioned in the Discussion
section, is performed within their own batches before imputation
calculation in SERM. After imputation, all the cells and genes are
relocated to their original places. The SERM-imputed datasets from
different batches are then integrated into a single dataset using a
z-score operation for downstream analyses. Please see supplementary
Fig. S43 for a detailed workflow of SERMwhen a dataset contains data
from different batches.

Datasets
The following datasets were used to benchmark SERM against differ-
ent existing imputation techniques:

Cellular taxonomy of the mouse bone marrow stroma. In this
dataset, scRNA-seq was used to define a cellular taxonomy of the
mouse bone marrow stroma, and its perturbation by malignancy36.
Seventeen stromal subsets were identified expressing distinct hema-
topoietic regulatory genes spanning new fibroblastic and osteoblastic

subpopulations including distinct osteoblast differentiation trajec-
tories. Emerging acute myeloid leukemia impaired mesenchymal
osteogenic differentiation and reduced regulatory molecules neces-
sary for normal hematopoiesis. This taxonomy of the stromal com-
partment provides a comprehensive bone marrow cell census and
experimental support for cancer cell crosstalk with specific stromal
elements to impair normal tissue function and thereby enable emer-
gent cancer.

Mammalian brain. The dataset is from a massively parallel scRNA-seq
technology namely sNucDrop-seq (single-nucleus RNA-seq
approach)37, which provides unbiased isolation of intact single cells
from complex tissues such as adult mammalian brains. The authors
profiled 18,194 nuclei isolated from cortical tissues of adult mice. The
authors demonstrated through extensive validation that sNucDrop-
seq not only accurately reveals neuronal and non-neuronal subtype
composition with high accuracy but also allows in-depth analysis of
transient transcriptional states driven by neuronal activity.

Mouse intestinal epithelium. Intestinal epithelial cells absorb nutri-
ents, respond to microbes, function as a barrier, and help to coordi-
nate immune responses. 53,193 individual epithelial cells from the
small intestine and organoids of mice were profiled by Haber et al.38,
which enabled the identification and characterization of previously
unknown subtypes of intestinal epithelial cell and their gene
signatures.

Human-engineered neural cells. The dataset is from a study on
human-engineered neural tissues39. ScRNA-seq data of human-induced
neuronal cells were cultured in two different conditions: (1) with
mouse astrocytes or (2) with differentiated human astrocytic cells. We
analyze the data from the second condition, where hESC (human
embryonic stem cells) induced neuronal cells and human astrocytic
cells differentiated from hESCs were co-cultured at a 1:1 ratio in a 3D
composite hydrogel.

Zebrafish embryogenesis. The dataset41 was profiled using a mas-
sively parallel scRNA-seq technology named Drop-seq2. Data were
acquired from the high blastula stage (3.3 hours postfertilization (hpf),
moment after transcription starts from the zygotic genome) to six-
somite stage (12 h after postfertilization, just after gastrulation). Most
cells are pluripotent at thehigh blastula stage,whereasmany cells have
differentiated into specific cell types at the six-somite stage.

EBdifferentiation. EB differentiation recapitulates key aspects of early
embryogenesis. It has been successfully used as the first step in dif-
ferentiation protocols for certain types of neurons, astrocytes and
oligodendrocytes, hematopoietic, endothelial and muscle cells, hepa-
tocytes and pancreatic cells, and germ cells. Approximately 31,000
cells were measured, equally distributed over a 27-day differentiation
time course by the authors of ref. 40. Samples were collected at 3-d
intervals and pooled for measurement on the 10x Chromium
platform40,42.

Human cell landscape. The HCL is a basic landscape of major human
cell types created based on samples from a Han Chinese population
using Microwell-seq technology57. Donated tissues were perfused or
washed and prepared as single-cell suspensions using specific stan-
dard protocols. The analyses included fetal and adult tissue samples
and covered 60 human tissue types. Seven types of cell culture,
including induced pluripotent stem (iPS) cells, embryoid body cells,
hematopoietic cells derived from co-cultures of humanH9 andmouse
OP9 cells58, and pancreatic beta cells derived from H9 cells using a
seven-stage protocol were also analyzed59. Single cells were processed
using Microwell-seq60 and sequenced at around 3000 reads per cell;
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data were then processed using published pipelines8. In total,
702,968 single cells passed the quality control tests (please see ref. 57
for details of the quality control tests). Following the authors’work, we
used 599,926 cells with 63 unique cell types and 59 unique tissue types
for our analysis.

Mouse cell atlas. For creating the MCA60, Mammary gland (virgin,
pregnant, lactation and involution), uterus, bladder, ovary, intestine,
kidney, lung, testis, pancreas, liver, spleen, muscle, stomach, bone
marrow, thymus, prostate, cKit+ bone marrow, bone marrow
mesenchymal cells and peripheral blood samples from 6- to 10-week-
old C57BL/6 mice were collected. Single cells were then sequenced
with Microwell- seq. The sequencing data were processed using
published pipelines8. Following the work of the authors60, we ana-
lyzed 333,778 cells with 52 unique cell types and 47 unique
tissue types.

Generating reference and observed datasets
To generate a reference dataset from real scRNA-seq data, following
ref. 12, we selected high-quality cells and genes with high expressions
from the original dataset to be the true expression λgc. We generated
the observed datasets by drawing from a Poisson distribution with
mean parameter τcλgc, where τc is the cell-specific efficiency loss. We
aimed to select roughly 10–20% of genes with the highest proportion
of cells with nonzero expression and 50–60% of the cells with the
largest library size. All the datasets were converted to transcripts per
million (TPM) before filtering so that downsampled datasets for a
range of efficiency losses (0.1–10%) can be created. The specific filters
used for each dataset are described in supplementary section 12
(Supplementary Table 4, Figs. S47 and S48).

To mimic variation in efficiency across cells, we sampled τc as
follows12:
1. 10% efficiency: τc ~ Gamma(10, 100)
2. 5% efficiency: τc ~ Gamma(10, 200)
3. 2% efficiency: τc ~ Gamma(10, 500)
4. 1% efficiency: τc ~ Gamma(10, 1000)
5. 0.5% efficiency: τc ~ Gamma(10, 2000)
6. 0.2% efficiency: τc ~ Gamma(10, 5000)
7. 0.1% efficiency: τc ~ Gamma(10, 10000)

Detailed statistics of the reference and observed datasets at dif-
ferent sampling efficiencies are added in section 12 (Supplementary
Figs. S47 and S48)of the supplementary. It is seen fromSupplementary
Fig. S47 that as the sampling efficiency reduces (from 10% to 0.1%), the
number of zeros (denoting dropouts) increases, and vice versa. In
Supplementary Fig. S48, it is seen that for all sampling efficiencies, the
dropout probability increases for the smaller expression values.

Competing methods
MAGIC was downloaded from https://github.com/pkathail/magic.
mcImpute, DeepImpute, and SAUCIE were downloaded from https://
github.com/aanchalMongia/McImpute_scRNAseq, https://github.
com/lanagarmire/deepimpute, https://github.com/KrishnaswamyLab/
SAUCIE. All these methods were used with default configurations.

Computation of Pearson coefficient
Let us assume thatRf andRe are the gene expression fromdropout-free
data and imputed data using different techniques. Let us assume, A is
thedropout-free gene expressiondata for a single cell fromRf, whereas
B is the gene expression vector for the same cell from Re. Then the
Pearson correlation coefficient between A and B is defined as

ρðA,BÞ= 1
m� 1

Xm
i = 1

Ai � μA

σA

� �
Bi � μB

σB

� �
, ð17Þ

where μA and σA are the mean and standard deviation of A, respec-
tively, and μB and σB are the mean and standard deviation of B.

Percentage improvement over observed data was defined as12

% changeover observed = 100×
ρmethod � ρobserved

ρobserved
, ð18Þ

where ρobserved and ρmethod are the mean Pearson coefficient of the
observed data and imputed data by a method, respectively.

Computation of NMI, accuracy, and cluster quality indices
We at first cluster the data into Ng classes (Ng is number of classes in
ground truth label) by k-means clustering technique with Euclidean
distance. Clusters were initialized using k-means++61. We then find the
best map of cluster labels compared to the ground truth labels. These
cluster labels are then used to compute the NMI, accuracy, and cluster
quality indices: adjusted Rand (AR) and Hubert. NMI is the normalized
mutual information62 between the estimated labels and true labels
computed following the work of Becht et al.32. Accuracy is the number
of correctly found class labels divided by total number of class labels.
Hubert andAR indices are computedusing the formula reported in the
work of Hubert et al.34.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. There was no blinding. The analyses performed do not involve
evaluation of any subjective matters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are available within themanuscript and supplementary. Source
data are provided with this paper. Cellular taxonomy, mammalian
brain, mouse intestinal epithelium, human-engineered neural cells,
and zebrafish embryogenesis datasets were downloaded from Broad
Institute single-cell portal (https://singlecell.broadinstitute.org/
single_cell). EB differentiation data was obtained from the Github
link: https://github.com/KrishnaswamyLab/PHATE. The human cell
landscape and mouse cell atlas data were acquired from http://bis.
zju.edu.cn/HCL/and http://bis.zju.edu.cn/MCA/. All other relevant
data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corre-
sponding author upon reasonable request. Source data are provided
with this paper.

Code availability
SERM is available as a Code Ocean capsule (https://doi.org/10.24433/
CO.7874136.v1). Its Python and Matlab source codes can be found at
https://github.com/xinglab-ai/self-consistent-expression-recovery-
machine(https://zenodo.org/badge/latestdoi/432331093)63.
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