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Abstract

Deep regression is an important problem with numerous ap-
plications. These range from computer vision tasks such as
age estimation from photographs, to medical tasks such as
ejection fraction estimation from echocardiograms for dis-
ease tracking. Semi-supervised approaches for deep regres-
sion are notably under-explored compared to classification
and segmentation tasks, however. Unlike classification tasks,
which rely on thresholding functions for generating class
pseudo-labels, regression tasks use real number target pre-
dictions directly as pseudo-labels, making them more sensi-
tive to prediction quality. In this work, we propose a novel
approach to semi-supervised regression, namely Uncertainty-
Consistent Variational Model Ensembling (UCVME), which
improves training by generating high-quality pseudo-labels
and uncertainty estimates for heteroscedastic regression.
Given that aleatoric uncertainty is only dependent on input
data by definition and should be equal for the same inputs,
we present a novel uncertainty consistency loss for co-trained
models. Our consistency loss significantly improves uncer-
tainty estimates and allows higher quality pseudo-labels to
be assigned greater importance under heteroscedastic regres-
sion. Furthermore, we introduce a novel variational model en-
sembling approach to reduce prediction noise and generate
more robust pseudo-labels. We analytically show our method
generates higher quality targets for unlabeled data and further
improves training. Experiments show that our method outper-
forms state-of-the-art alternatives on different tasks and can
be competitive with supervised methods that use full labels 1.

Introduction
Deep learning has achieved state-of-the-art results on a vari-
ety of tasks such as classification (Dosovitskiy et al. 2020),
segmentation (Chen et al. 2021), image generation (Bodla,
Hua, and Chellappa 2018), and others. These methods tend
to require large amounts of labeled data for training, how-
ever, which can be costly to annotate. State-of-the-art image
classifiers such as ViT are trained on the JFT-300M dataset,
for example, which consists of 300 million images (Doso-
vitskiy et al. 2020). Labeling can also be prohibitively ex-
pensive for medical image analysis, where life-saving tasks
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1Code is available at https://github.com/xmed-lab/UCVME

Figure 1: Differences between standard pseudo-labeling ap-
proaches and our method (UCVME). Classification tasks
typically apply thresholding functions to probability pre-
dictions, p̂i, to obtain one-hot pseudo-labels, ŷi. Regres-
sion tasks use real number target predictions, ŷ, directly as
pseudo-labels and are therefore more sensitive to predic-
tion quality. Our UCVME improves pseudo-labels for re-
gression by considering pseudo-label uncertainty, σ2, and
robustness. We use a novel uncertainty consistency loss to
improve uncertainty-based loss weighting and a variational
model ensembling method to improve pseudo-label quality.

such as medical disease diagnoses (Li et al. 2021) and tumor
segmentation (Li et al. 2018a) require domain expertise. The
ability to train neural networks with reduced labels is there-
fore highly valuable and an active research area.

Semi-supervised learning uses unlabeled data together
with a smaller labeled dataset for model training. These
methods reduce reliance on labeled data and sometimes out-
perform state-of-the-art techniques on fully labeled datasets.
Chen et al. (Chen et al. 2021) propose CPS, a semi-
supervised algorithm for image segmentation, which is time-
consuming to label. Li et al. (Li et al. 2021) enforce con-
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sistency between transformed inputs for medical diagnosis,
which requires specialist knowledge for annotation. How-
ever, comparatively less attention has been paid to deep re-
gression problems, which cover practical applications such
as age estimation (Berg, Oskarsson, and O’Connor 2021)
and pose estimation (Yang et al. 2019) from images. Deep
regression is particularly important in the medical field as
it is used to obtain measurements for disease diagnosis and
progression tracking, such as bone mineral density estima-
tion for osteoporosis (Hsieh et al. 2021) and ejection fraction
estimation for cardiomyopathy (Ouyang et al. 2020).

Regression problems are fundamentally different from
classification problems because they generate real number
predictions instead of class probabilities. Existing semi-
supervised classification techniques cannot be applied to
semi-supervised regression because they rely on class prob-
abilities and thresholding functions to generate pseudo-
labels (Zhang et al. 2021; Sohn et al. 2020) (see Fig. 1). Lim-
ited efforts have been devoted to exploring semi-supervised
approaches for deep regression. Recent works by Jean et al.
(Jean, Xie, and Ermon 2018) propose deep kernel learning
for semi-supervised regression, but their method is designed
for tabular data. Pretrained feature extractors are used for
image inputs, which prevents task-specific feature learning
and limits performance. Wetzel et al. (Wetzel, Melko, and
Tamblyn 2021) propose TNNR, which estimates the dif-
ference between inputs with deep networks and uses loop
consistency for unlabeled data. Loop consistency regulates
training, but poor-quality predictions can still reduce the ef-
fectiveness of the constraints (see Tables 1 and 4).

Unlike classification tasks, which can smooth predictions
using thresholding functions for class pseudo-labeling, re-
gression tasks directly use real number target predictions
as pseudo-labels. Therefore, model performance highly de-
pends on the quality of pseudo-labels, i.e. predictions. In
this paper, we propose a novel Uncertainty-Consistent Vari-
ational Model Ensembling method, namely UCVME, that
adjusts for the uncertainty of pseudo-labels during training
and increases pseudo-label robustness. Our method is based
on two key ideas: enforcing uncertainty consistency between
co-trained models to improve uncertainty-based loss weight-
ing, and using ensembling techniques to reduce prediction
variance for obtaining higher quality pseudo-labels.

We make use of Bayesian neural networks (BNNs), which
predict aleatoric uncertainty of observations jointly with the
target value. The uncertainty estimates are used for het-
eroscedastic regression, which assigns sample weightings
based on uncertainty to reduce the impact of noisier sam-
ples (Kendall and Gal 2017). We observe that aleatoric un-
certainty, which by definition is dependant only on input
data, should be equal for the same input, and propose a novel
consistency loss for uncertainty predictions of co-trained
models. Our proposed loss notably improves aleatoric un-
certainty estimates on unlabeled data, such that higher qual-
ity pseudo-labels are given greater importance through het-
eroscedastic regression (see Fig. 5). This is non-trivial since
unreliable uncertainty estimates can lead to adverse loss-
weighting and unstable training. Our proposed method is the
first to address uncertainty estimation quality for regression.

Figure 2: Semi-supervised deep regression framework for
our UCVME method. UCVME improves overall pseudo-
label quality and assigns greater sample weights to pseudo-
labels with low uncertainty.

BNNs also use variational inference during prediction to
approximate the underlying distribution of estimates. To im-
prove robustness of pseudo-labels, we introduce variational
model ensembling, which uses ensembling methods with
variational inference to reduce prediction noise. We analyti-
cally show our approach generates higher quality targets for
unlabeled data and validate results experimentally (see Ta-
ble 2). The combined improvements in uncertainty estima-
tion and pseudo-label quality lead to state-of-the-art perfor-
mance. Fig. 2 illustrates the overall framework.

We demonstrate our method on two regression tasks: age
estimation from photographs and ejection fraction estima-
tion from echocardiogram videos. Results show our method
outperforms state-of-the-art alternatives and is competitive
with supervised approaches using full labels (see Tables 1
and 4). Ablations demonstrate individual contributions from
uncertainty consistency and variational model ensembling
(Table 2). We summarize our main contributions as follows:

• We propose UCVME, a novel semi-supervised method
that improves uncertainty estimates and pseudo-label ro-
bustness for deep regression tasks.

• We introduce a novel consistency loss for aleatoric un-
certainty predictions of co-trained models, based on the
insight that estimates should be equal for the same input.

• We introduce variational model ensembling for generat-
ing pseudo-labels on unlabeled data, which we analyti-
cally show is more accurate than deterministic methods.

• Results show our method outperforms existing state-of-
the-art alternatives on two separate regression tasks.

Related Works
In this section, we review works on learning from unlabeled
data, general approaches for semi-supervised learning, state-
of-the-art methods for semi-supervised regression, and ex-
isting methods for uncertainty estimation.

Unsupervised Representation Learning
One way to learn from unlabeled data is to learn unsu-
pervised feature representations, which can then be fine-
tuned for specific tasks using classifiers. Techniques such as



PCA (Bengio, Courville, and Vincent 2013) and data clus-
tering (Huang, Loy, and Tang 2016) learn intermediate fea-
tures by reducing input dimensionality. With the increas-
ing effectiveness of deep learning, pre-text tasks such as
input reconstruction (Kingma and Welling 2013), augmen-
tation prediction (Zhang et al. 2019), and order prediction
(Noroozi and Favaro 2016) have been explored for unsuper-
vised training of deep feature extractors. Current state-of-
the-art approaches are based on contrastive learning, which
has been shown in some cases to outperform supervised
learning (Chen, Xie, and He 2021; Chen et al. 2020).

Semi-Supervised Learning
Semi-supervised learning uses both labeled and unlabeled
data for training. This reflects realistic settings where raw
data is easy to obtain but annotations can be costly. State-
of-the-art methods include enforcing consistency on aug-
mented inputs and using pseudo-labels for unlabeled sam-
ples. For example, CCT (Ouali, Hudelot, and Tami 2020)
applies prediction consistency after perturbing intermedi-
ate features. CPS (Chen et al. 2021) enforces consistency
of segmentation predictions between co-trained models.
Temporal ensembling (Laine and Aila 2016) and mean-
teacher (Tarvainen and Valpola 2017) methods use predic-
tion and model-weight ensembling respectively to gener-
ate pseudo-labels. FixMatch (Sohn et al. 2020) and Flex-
Match (Zhang et al. 2021) use class probability threshold-
ing for pseudo-labeling to achieve state-of-the-art results on
semi-supervised classification. Similar techniques have been
applied to video action recognition (Xu et al. 2021), image
generation (Bodla, Hua, and Chellappa 2018), medical im-
age segmentation (Li et al. 2020, 2018b; You et al. 2022; Lin
et al. 2022), and other tasks.

Semi-Supervised Regression
Regression problems are fundamentally different from clas-
sification as they involve predicting real numbers in IR in-
stead of class probabilities. Semi-supervised classification
methods, which use thresholding functions to select high-
probability class pseudo-labels (Sohn et al. 2020; Zhang
et al. 2021), cannot be adapted to regression tasks because
there is no equivalent to probability thresholding for real
number predictions. Different formulations must be used in-
stead to quantify prediction uncertainty for regression tasks.

Less attention has been paid to semi-supervised deep re-
gression despite its importance (Jean, Xie, and Ermon 2018;
Wetzel, Melko, and Tamblyn 2021; Yin et al. 2022). Semi-
supervised regression is especially valuable in medical im-
age analysis, since regression tasks are widely used and an-
notation costs are high (Ouyang et al. 2020; Hsieh et al.
2021; Dai et al. 2022). COREG (Zhou, Li et al. 2005) is
a semi-supervised regression technique originally proposed
in 2005 but still commonly used today. Two KNN regressors
are co-trained and used to generate pseudo-labels for unla-
beled data. Co-training schemes have also been extended to
support vector regression by Xu et al. (Xu et al. 2011).
Graph-based methods proposed in (Timilsina et al. 2021)
make use of input proximity for pseudo-labeling. More re-
cent works by Jean et al. (Jean, Xie, and Ermon 2018) and

Mallick et al. (Mallick et al. 2021) make use of deep kernel
learning for regression.

One major disadvantage of these methods is that they are
primarily designed for structured inputs, where samples con-
sist of one-dimensional tabular data. Feature extractors can-
not be trained end-to-end for unstructured inputs such as im-
ages and video. Jean et al. (Jean, Xie, and Ermon 2018)
for example rely on feature extractors pretrained on Ima-
geNet (Deng et al. 2009) to obtain one dimensional embed-
dings from images. This limits performance as task-specific
features cannot be learned (see results in Tables 1 and 4).
TNNR (Wetzel, Melko, and Tamblyn 2021) is an alterna-
tive method that uses deep networks to predict differences
between input pairs. Loop consistency is applied to ensure
looped differences sum to zero. Although loop consistency
helps regularize training on unlabeled data, inaccurate pre-
dictions can limit its effectiveness (see Tables 1 and 4).

Unlike previous works, we address semi-supervised deep
regression by improving uncertainty estimation and pseudo-
label quality for real number targets. Our UCVME method,
which proposes a novel uncertainty consistency loss and
variational model ensembling, allows training to be focused
on high-quality, robust pseudo-label targets and achieves
state-of-the-art results on different regression tasks.

Uncertainty Estimation
Uncertainty estimation is commonly used in semi-
supervised learning to adjust for pseudo-label quality of
unlabeled samples. UA-MT (Yu et al. 2019) and UMCT
(Xia et al. 2020) both use Monte Carlo dropout to estimate
pseudo-label uncertainty, which is then used to filter pseudo-
labels or weight unlabeled samples for segmentation tasks.
Yao et al. (Yao, Hu, and Li 2022) and Lin et al. (Lin et al.
2022) estimate uncertainty based on prediction differences
between co-trained models for segmentation of medical im-
ages. Semi-supervised classification methods such as Fix-
Match (Sohn et al. 2020) and FlexMatch (Zhang et al. 2021)
implicitly filter out uncertain pseudo-labels by setting confi-
dence thresholds for predictions.

Uncertainty estimation approaches designed for semi-
supervised deep regression have not been explored in exist-
ing works however. Although methods such as heteroscedas-
tic regression can be used to estimate uncertainty, it can only
be done through joint prediction with the target label (Kauf-
man 2013). Naı̈ve implementation using pseudo-labels give
unreliable estimates, which can leads to inaccurate pseudo-
labels being assigned larger weights (see Fig. 5). In this
work, we propose a novel uncertainty consistency loss that
significantly improves the quality of uncertainty estimates
on unlabeled data. This results in more effective uncertainty-
based sample weighting and leads to state-of-the-art perfor-
mance on different semi-supervised deep regression tasks.

Methodology
UCVME is based on two novel ideas: enforcing aleatoric
uncertainty consistency to improve uncertainty-based loss
weighting, and variational model ensembling for generat-
ing high-quality pseudo-labels. We make use of Bayesian



neural networks, which differ from regular neural networks
by their usage of aleatoric uncertainty prediction and vari-
ational inference (Kendall and Gal 2017). We denote D :=

{(xi, yi)}Ni=1 as the labeled dataset consisting of N sam-
ples, where xi is the input data and yi is its correspond-
ing label. We denote D′ := {x′i′}

N ′

i′=1 as the unlabeled
dataset consisting of input data only. We train two BNNs,
fm where m ∈ {a, b}, in a co-training framework and use
Monte Carlo dropout for training and inference. We denote
ŷi,m as model m’s prediction for target label yi. We de-
note σ2

i as aleatoric uncertainty but predict log-uncertainty
lnσ2

i in practice, which is always done to avoid obtaining
negative predictions for variance. We denote predicted log-
uncertainty using ẑi,m.

Aleatoric Uncertainty Consistency Loss for
Improved Heteroscedastic Regression
Aleatoric uncertainty, σ2

i , refers to uncertainty relating to in-
put data. It is used in BNNs as the variance parameter for
heteroscedastic regression loss:

Lreg =
1

N

N∑
i=0

(yi − ŷi)2

2σ2
i

+
lnσ2

i

2
. (1)

where ŷi is the prediction for target label yi. Intuitively,
the loss function weighs error values dynamically based on
aleatoric uncertainty. Samples with high uncertainty are re-
garded as having lower quality labels with higher noise,
and these are given less importance compared to those with
greater certainty (Kendall and Gal 2017). Its formal deriva-
tion is based on maximum likelihood estimation, assum-
ing observation errors are distributed with different levels
of variance (Kaufman 2013). In contrast, standard mean
squared error (MSE) loss assumes homoscedastic errors, i.e.
uncertainty values σ2

i have equal variance, which is a more
restrictive and unrealistic assumption. We refer interested
readers to Sup-1 of the supplementary materials for a review
of formal derivations and comparisons.

Heteroscedastic regression can be beneficial for unlabeled
data as it allows samples to be weighted based on pseudo-
label uncertainty. In practice however, uncertainty prediction
is difficult because uncertainty has no ground truth label and
must be jointly predicted with the target value. Unstable pre-
dictions that do not reflect label quality can adversely affect
training by assigning noisier samples with larger weights.
Stable training is even more difficult for unlabeled data be-
cause the target ground truth value is also unavailable, which
is why heteroscedastic regression has not been successfully
used in existing semi-supervised works. We show this effect
in Fig. 5, where we see uncertainty predictions obtained us-
ing heteroscedastic regression only can be unreliable.

We observe that aleatoric uncertainty for the same input
data should be equal by definition and introduce a novel con-
sistency loss to enforce consistent uncertainty predictions
between co-trained models. Prediction consistency is known
to be an effective regularizer (Chen et al. 2021) and can be
applied to both labeled and unlabeled data to improve esti-
mates. By ensuring uncertainty predictions from co-trained

models are consistent, we provide an extra training signal
in addition to joint estimation with the target label, which
helps the model learn more reliable predictions. For labeled
inputs, we introduce consistency loss, Llb

unc:

Llb
unc =

1

N

N∑
i=1

(ẑi,a − ẑi,b)2 , (2)

which is based on L2 distance. Heteroscedastic regression
loss is calculated using the uncertainty predictions:

Llb
reg =

1

N

∑
m=a,b

N∑
i=1

(
(ŷi,m − yi)2

2 exp(ẑi,m)
+
ẑi,m
2

)
. (3)

For unlabeled data, ground truth target labels for y are un-
available, which makes joint uncertainty prediction chal-
lenging. We instead make use of variational model ensem-
bling to obtain pseudo-labels for log-uncertainty, z̃i, which
is used as the training target. We describe variational model
ensembling for unlabeled samples in the subsection below.

Variational Model Ensembling for Pseudo-label
Generation
BNNs use Monte Carlo dropout and variational inference to
estimate the distribution of the predictor ŷ. To reduce pre-
diction noise, we can use ensembling techniques that reduce
predictor variance, which can be demonstrated through bias-
variance decomposition. The performance of predictor ŷ can
be evaluated using expected MSE, which we decompose us-
ing bias-variance decomposition as follows:

E[(ŷi − yi)2] = (E[ŷi]− yi)2 + E[(ŷi − E[ŷi])
2] , (4)

where the first right-hand side term is the bias and the sec-
ond is the variance. If we take individual sample predictions
from variational inference, ŷ t

i , and obtain an ensemble to
form a new predictor ỹi, we have:

ỹi =
1

T

T∑
t=1

ŷ t
i , (5)

where T is the number of samples used. The expected MSE
loss of the predictor ỹi is then:

E[(ỹi − yi)2] = (E[ỹi]− yi)2 + E[(ỹi − E[ỹi])
2] . (6)

The bias terms of the predictors are equal, but the variance
term in equation 6 cannot be greater than in equation 4 be-
cause more samples are observed (see Sup-2 of supplemen-
tary materials for more detailed derivations). This means
predictor ỹi will have expected MSE lower than or equal
to ŷi and will always have higher quality.

Based on this effect, we propose variational model en-
sembling for generating pseudo-labels on both target value
ỹi and log aleatoric uncertainty z̃i. Whereas pseudo-labels
for co-trained models typically rely on cross-supervision
in state-of-the-art approaches (Xu et al. 2021; Chen et al.



2021), we ensemble the average estimate of the co-trained
models and apply variational inference:

ỹi =
1

T

T∑
t=1

ŷ t
i,a + ŷ t

i,b

2
, (7)

z̃i =
1

T

T∑
t=1

ẑ t
i,a + ẑ t

i,b

2
. (8)

and use this as the pseudo-label for training. Compared
to cross-supervision, pseudo-labels calculated using varia-
tional model ensembling are more accurate because of re-
duced predictive variance and better reflect the true tar-
get and uncertainty values. This is especially important for
regression targets because pseudo-labels directly use real
number predictions and do not rely on thresholding func-
tions for smoothing. Uncertainty consistency on unlabeled
data is then calculated using z̃i as the training target:

Lulb
unc =

1

N ′

∑
m=a,b

N ′∑
i=1

(ẑi,m − z̃i)2 . (9)

Heteroscedastic regression loss for unlabeled data is calcu-
lated using ỹi as the target and z̃i as the log-uncertainty:

Lulb
reg =

1

N ′

∑
m=a,b

N ′∑
i=1

(
(ŷi,m − ỹi)2

2 exp(z̃i)
+
z̃i
2

)
. (10)

The improved pseudo-labels lead to more stable het-
eroscedastic regression, which generates better training sig-
nals on unlabeled data.

Overall Semi-Supervised Framework
During training, we calculate heteroscedastic regression loss
Llb
reg and aleatoric uncertainty consistency loss Llb

unc using
labeled samples. Pseudo-labels for unlabeled data are gen-
erated using Eq. 7 and 8 at the start of every training iter-
ation with the most current model weights. The loss values
for Lulb

reg and Lulb
unc are calculated for the unlabeled data and

jointly optimized with labeled data using the total loss:

L =Llb
reg + Llb

unc + wulb ( Lulb
reg + Lulb

unc ) , (11)

where wulb is the weighting parameter for unlabeled data.
Variational model ensembling is also used for test-time in-
ference to obtain ỹi as the final prediction. Pseudo-code is
given in S-Algorithm 1 of the supplementary materials.

Experiments
We demonstrate our method on two semi-supervised deep
regression problems: age estimation from photographs and
ejection fraction estimation from echocardiogram videos. 2

2Code is available at https://github.com/xmed-lab/UCVME.

Figure 3: Sample data from UTKFace dataset (Zhang, Song,
and Qi 2017) for age estimation. Pre-cropped images are
paired with age labels for training.

Age Estimation from Photographs
Age estimation involves predicting a person’s age based on
their photograph, and is commonly used as a benchmark task
for deep regression. Facial images can be easily obtained,
but accurate age labels may not always be available given
concerns over data privacy. Semi-supervised deep regression
methods can provide label-efficient approaches for training.

Dataset We use the UTKFace dataset (Zhang, Song,
and Qi 2017) and follow the train-test split in previous
works (Cao, Mirjalili, and Raschka 2019). A total of 13,144
images are available for training and 3,287 images for test-
ing. We use a subset of the training dataset for validation.
Faces have been pre-cropped and age labels range from 21
to 60 (see Figure 3 for examples). For our semi-supervised
setting, we use subsets of the training data as labeled data
and the remaining as unlabeled data. Label distributions are
shown in S-Fig. 1 of the supplementary materials.

Settings We use ResNet-50 (He et al. 2016) as our en-
coder and add additional dropout layers after each of the four
main residual blocks. The model is trained for 30 epochs us-
ing learning rate 10−4, weight decay 10−3, and the Adam
optimizer. We use a batch size of 32 for both labeled and
unlabeled data. We set dropout probability as 5% and use
T = 5 for variational inference. We set wulb = 10 which
we choose empirically (see S-Table 1 in supplementary ma-
terials). Mean absolute error (MAE) and R2 are used for
evaluation on the test set. Experiments are run six times and
mean results are reported with standard deviation.

Comparison with state-of-the-art We compare our
method with alternative state-of-the-art approaches for semi-
supervised regression, specifically COREG (Zhou, Li et al.
2005), SSDPKL (Mallick et al. 2021), and TNNR (Wetzel,
Melko, and Tamblyn 2021), and also adapt mean-teacher
(Tarvainen and Valpola 2017) and temporal ensembling
(Laine and Aila 2016) methods for regression. To highlight
the impact of our proposed components, we introduce a
baseline method (Baseline) that uses two co-trained BNNs
with heteroscedastic regression loss, but without aleatoric
uncertainty consistency loss and variational model ensem-
bling. We perform training under different semi-supervised
settings using only 5%, 10%, and 20% of the available train-
ing labels. The remaining samples are treated as unlabeled
data. For reference, we also show results using the super-
vised state-of-the-art method by Berg et al. (Berg, Oskars-
son, and O’Connor 2021) (RNDB) for the same settings us-
ing reduced labels, as well as on the fully labeled dataset.



Table 1: Comparison with state-of-the-art methods for age estimation from photographs. We use settings where only 5%, 10%,
and 20% of training labels are available. “Supervised” methods are only able to use labeled data while “Semi-supervised”
methods can use labeled and remaining unlabeled data. “Baseline” method uses two co-trained BNNs without uncertainty
consistency loss and variational model ensembling. Bold numbers represent the best result.

MAE Values ↓
Type Method Encoder 5% labeled 10% labeled 20% labeled All labels
Supervised RNDB (Berg, Oskarsson, and O’Connor 2021) ResNet50 6.21 ± 0.12 5.69 ± 0.09 5.38 ± 0.10 4.83 ± 0.06

Semi-
Supervised

Mean-teacher (Tarvainen and Valpola 2017) ResNet50 6.15 ± 0.08 5.54 ± 0.07 5.29 ± 0.05 -
Temporal ensembling (Laine and Aila 2016) ResNet50 6.09 ± 0.07 5.53 ± 0.05 5.25 ± 0.04 -
SSDPKL (Jean, Xie, and Ermon 2018) ResNet50 6.08 ± 0.06 5.50 ± 0.01 5.27 ± 0.08 -
TNNR (Wetzel, Melko, and Tamblyn 2021) ResNet50 5.94 ± 0.04 5.41 ± 0.11 5.08 ± 0.05 -
COREG (Zhou, Li et al. 2005) ResNet50 5.97 ± 0.06 5.39 ± 0.04 4.97 ± 0.03 -
Baseline ResNet50 5.92 ± 0.07 5.40 ± 0.03 4.96 ± 0.03 -
Ours ResNet50 5.84 ± 0.06 5.26 ± 0.02 4.85 ± 0.03 -

R2 Values ↑
Type Method Encoder 5% labeled 10% labeled 20% labeled All labels
Supervised RNDB (Berg, Oskarsson, and O’Connor 2021) ResNet50 43.8% ± 7.5 51.0% ± 3.1 57.5% ± 2.7 65.3% ± 0.3

Semi-
Supervised

Mean-teacher (Tarvainen and Valpola 2017) ResNet50 45.7% ± 1.1 54.3% ± 0.4 58.0% ± 0.5 -
Temporal ensembling (Laine and Aila 2016) ResNet50 46.1% ± 1.0 54.2% ± 0.4 58.9% ± 0.3 -
SSDPKL (Jean, Xie, and Ermon 2018) ResNet50 46.2% ± 1.3 54.2% ± 0.2 58.1% ± 0.9 -
TNNR (Wetzel, Melko, and Tamblyn 2021) ResNet50 48.6% ± 0.3 53.1% ± 1.5 58.6% ± 0.5 -
COREG (Zhou, Li et al. 2005) ResNet50 47.4% ± 1.0 56.6% ± 0.4 62.7% ± 0.2 -
Baseline ResNet50 47.9% ± 1.1 56.3% ± 0.5 62.5% ± 0.2 -
Ours ResNet50 49.4% ± 0.7 57.9% ± 0.3 64.3% ± 0.5 -

The same ResNet-50 encoder (He et al. 2016) is used in
all methods for fair comparison. We also modify COREG
to use co-trained deep regression models instead of KNN
regression and use a pretrained feature encoder for SSDPKL
to obtain image features. Additional implementation details
are included in Sup-3 of supplementary materials. We show
results in Table 1 and visually plot them in Fig. 4.

We can see from Fig. 4 that the supervised approach
(blue) under-performs semi-supervised approaches in gen-
eral. Our method (red) gives the best results and achieves
the lowest MAE values for all settings. We also note that
our method achieves performance competitive with fully su-
pervised results using only 20% of available training labels
(MAE 4.85 v.s. 4.83). UCVME therefore effectively reduces
reliance on labeled data for deep regression.

Ablation Study We analyze the performance contribution
of different components through ablation. We compare re-
sults with the baseline model (Baseline) after adding uncer-
tainty consistency loss (Baseline + Con.), variational model
ensembling (Baseline + Ens.), and both modules (Ours) in
separate runs to understand the gains from each component.
The model is trained with 10% of the training labels and the
rest is used as unlabeled data. Results are shown in Table 2.

We can see consistency loss and variational model ensem-
bling have individual contributions and separately reduce
MAE by roughly 0.10. Best results are achieved using both.

Impact of consistency loss on uncertainty estimates We
analyze the impact of consistency loss on uncertainty esti-
mates by visualizing its relationship with pseudo-label qual-
ity. Intuitively, improved uncertainty estimates will show
a stronger negative relationship with pseudo-label quality,

Figure 4: MAE of different state-of-the-art methods for age
estimation. Our proposed method (red) consistently achieves
the best results under all settings and is competitive with the
supervised approach trained with full labels (blue).

Table 2: Ablation study with 10% of available labels. Re-
maining samples are used as unlabeled data. “Baseline”
method uses two co-trained BNNs without uncertainty con-
sistency loss and variational model ensembling. ”Cons.”
refers to the use of aleatoric uncertainty consistency loss.
”Ens.” refers to the use of variational model ensembling.

Method Con. Ens. MAE↓ R2 ↑
Baseline 5.40 ± 0.03 56.3% ± 0.5
Baseline + Con. X 5.30 ± 0.01 57.6% ± 0.2
Baseline + Ens. X 5.31 ± 0.02 57.4% ± 0.2
Ours X X 5.26 ± 0.02 57.9% ± 0.3



Figure 5: MSE of pseudo-labels plotted against predicted
aleatoric uncertainty. Improved uncertainty estimates should
display a stronger negative relationship with quality, since
higher uncertainty indicates lower quality pseudo-labels
with higher MSE. We can see that uncertainty estimates be-
come more reliable after applying uncertainty consistency
loss as the relationship between predicted uncertainty and
pseudo-label quality is much clearer (solid v.s. dashed lines).

since higher uncertainty means more prediction noise and
lower quality labels. We obtain pseudo-labels and uncer-
tainty predictions for unlabeled samples using the Baseline
and Baseline + Con. models. Samples are grouped into ten
equal bins based on sorted uncertainty predictions. Pseudo-
label quality is measured using MSE against the ground truth
target value. Average aleatoric uncertainty is calculated for
each group. The two values are plotted against each other in
Fig. 5 using models trained after five and twenty epochs.

For the Baseline + Con. model, we see overall MSE and
uncertainty both decrease after training for more epochs
(solid red line v.s. solid blue line). Pseudo-labels with lower
uncertainty have lower MSE and are of higher quality. In
contrast, uncertainty predictions from the Baseline model
are more extreme (dashed lines) and are not significantly re-
duced with training (dashed red line v.s. dashed blue line).
The relationship between uncertainty and pseudo-label qual-
ity is not strong, which can lead to noisier samples being
assigned higher loss weightings. Aleatoric uncertainty con-
sistency loss therefore improves uncertainty estimates sig-
nificantly and helps prevent adverse sample weighting.

Computational Cost We show in Table 3 the computa-
tional cost of different semi-supervised deep regression ap-
proaches in gigaFLOPS per image (G). We note that the cost
of UCVME is dependant on T , the number of iterations used
for variational model ensembling, which is set to 5. For ref-
erence, we also show the cost from using a single iteration,
T = 1, which is equivalent to enforcing uncertainty consis-
tency only without using variational model ensembling.

We can see our UCVME method with T = 1 incurs the
same cost as COREG. Regression performance outperforms
COREG however due to the use of uncertainty consistency,
which can be seen from results in Tables 1 and 2 (MAE
5.30 v.s. 5.39). Using variational model ensembling by set-

Table 3: Computation cost of state-of-the-art semi-
supervised regression methods in gigaFLOPS per image
(G). We also show the cost for our method UCVME without
variational model ensembling by setting T = 1.

Method Computation
Cost (G)

Mean-teacher (Tarvainen and Valpola 2017) 4
Temporal ensembling (Laine and Aila 2016) 4
SSDPKL (Jean, Xie, and Ermon 2018) 4
COREG (Wetzel, Melko, and Tamblyn 2021) 21
TNNR (Zhou, Li et al. 2005) 77
Ours w/o variational model ensembling (T = 1) 21
Ours (T = 5) 49

Figure 6: Sample data from EchoNet-Dynamic (Ouyang
et al. 2019). Echocardiogram video sequences are paired
with LVEF values.

ting T = 5 leads to more computation but better predictions.
Although mean-teacher, temporal ensembling, and SSDPKL
require less computation, they do not perform as well.

Ejection Fraction Estimation from
Echocardiogram Videos
Left ventricular ejection fraction (LVEF) is the most com-
monly used medical indicator for diagnosing cardiac disease
(Hughes et al. 2021). It is the percentage difference between
the maximum and minimum volume of a heart’s left ven-
tricle (LV) and measures blood pumping capability. LVEF
is manually labeled from echocardiogram video by estimat-
ing maximum and minimum volume based on LV segmen-
tations using method of disks (Foley et al. 2012) and finding
their percentage difference. An illustration of this process
is given in S-Fig. 3 of the supplementary materials for inter-
ested readers. State-of-the-art methods for automating LVEF
estimation use spatial-temporal models to perform end-to-
end regression on raw video. Video regression requires large
amounts of labeled data however, and existing methods by
Ouyang et al. (Ouyang et al. 2020) and Dai et al. (Dai et al.
2021) use up to 10,030 samples for training. Like most med-
ical tasks, annotation requires domain expertise and can be
costly, motivating the need for label efficient methods.

Dataset We use the EchoNet-Dynamic dataset (Ouyang
et al. 2019), which consists of 10,030 echocardiogram
videos with LVEF labels (see Fig. 6 for examples). The
videos have been rescaled to 112 × 112 pixels and pre-
divided into 7,465 videos for training, 1,288 videos for vali-
dation, and 1,277 videos for testing. For our semi-supervised
setting, we use subsets of the training labels as our labeled



Table 4: Comparison with state-of-the-art methods for ejection fraction estimation from echocardiogram video. We use set-
tings where only 1/16, 1/8, and 1/4 of training labels are available. “Supervised” methods are only able to use labeled data
while “Semi-supervised” methods can use labeled and remaining unlabeled data. “Baseline” method uses two co-trained BNNs
without uncertainty consistency loss and variational model ensembling. Bold numbers represent the best result.

MAE Values ↓
Type Method Encoder 1/16 labeled 1/8 labeled 1/4 labeled All labels
Supervised Ouyang et al. (Ouyang et al. 2020) R2+1D 6.04 ± 0.20 5.57 ± 0.21 4.78 ± 0.11 4.13 ± 3.85

Semi-
Supervised

Mean-teacher (Tarvainen and Valpola 2017) R2+1D 6.01 ± 0.09 5.51 ± 0.06 4.71 ± 0.07 -
Temporal ensembling (Laine and Aila 2016) R2+1D 5.97 ± 0.08 5.52 ± 0.06 4.67 ± 0.06 -
SSDPKL (Jean, Xie, and Ermon 2018) R2+1D 6.01 ± 0.04 5.47 ± 0.01 4.68 ± 0.07 -
TNNR (Wetzel, Melko, and Tamblyn 2021) R2+1D 5.90 ± 0.11 5.46 ± 0.08 4.79 ± 0.08 -
COREG (Zhou, Li et al. 2005) R2+1D 5.94 ± 0.07 5.31 ± 0.02 4.57 ± 0.02 -
Baseline R2+1D 5.93 ± 0.10 5.36 ± 0.05 4.58 ± 0.03 -
Ours R2+1D 5.77 ± 0.04 5.10 ± 0.05 4.37 ± 0.05 -

R2 Values ↑
Type Method Encoder 1/16 labeled 1/8 labeled 1/4 labeled All labels
Supervised Ouyang et al. (Ouyang et al. 2020) R2+1D 55.3% ± 2.6 62.5% ± 2.2 71.6% ± 1.4 80.4% ± 1.2

Semi-
Supervised

Mean-teacher (Tarvainen and Valpola 2017) R2+1D 55.1% ± 1.4 62.9% ± 0.7 72.5% ± 0.4 -
Temporal ensembling (Laine and Aila 2016) R2+1D 55.2% ± 1.3 62.9% ± 0.7 73.2% ± 0.3 -
SSDPKL (Jean, Xie, and Ermon 2018) R2+1D 56.3% ± 1.0 61.2% ± 0.3 74.1% ± 1.0 -
TNNR (Wetzel, Melko, and Tamblyn 2021) R2+1D 55.9% ± 1.2 63.4% ± 0.8 73.7% ± 0.6 -
COREG (Zhou, Li et al. 2005) R2+1D 55.1% ± 0.7 64.5% ± 0.4 74.1% ± 0.1 -
Baseline R2+1D 55.2% ± 1.4 64.9% ± 0.3 74.5% ± 0.1 -
Ours R2+1D 57.8% ± 0.6 66.6% ± 0.5 76.3% ± 0.6 -

data and remaining samples as unlabeled data. Label distri-
butions are given in S-Fig. 2 of the supplementary materials.

Settings We use the R2+1D ResNet encoder (Tran et al.
2018) pretrained on Kinetics 400 (Kay et al. 2017) and add
additional dropout layers between the four main residual
blocks. We set dropout probability as 5% and use T = 5 for
variational inference. The model is trained using SGD with
10−4 learning rate and 0.9 momentum for 25 epochs. Learn-
ing rate is decayed by 0.1 at epoch 15. Clips of 32 frames
are sampled from videos at a rate of 1 in every 2 frames for
input. Batches of 10 clips are used for labeled and unlabeled
videos. We set wulb = 10 which we choose empirically (see
S-Table 2 of supplementary materials). We evaluate perfor-
mance using MAE and R2. Experiments are run five times
and mean results with standard deviation are reported.

Comparison with state-of-the-arts We compare our
method with mean-teacher (Tarvainen and Valpola 2017),
temporal ensembling (Laine and Aila 2016), COREG (Zhou,
Li et al. 2005), SSDPKL (Mallick et al. 2021), TNNR (Wet-
zel, Melko, and Tamblyn 2021), and our baseline model
(Baseline). We perform training under settings where one-
sixteenth, one-eighths, and one-quarter of the training labels
are used, with the remainder treated as unlabeled data. For
reference, we also show results using the supervised method
by Ouyang et al. (Ouyang et al. 2020) on the reduced la-
bels as well as on the fully labeled dataset. The Kinetics pre-
trained R2+1D ResNet encoder (Tran et al. 2018) is used in
all methods for fair comparison. Additional implementation
details are given in Sup-4 of the supplementary materials.
Results are shown in Table 4 and plotted in Fig. 7.

Our method consistently achieves the best results for all

Figure 7: MAE of different state-of-the-art methods for ejec-
tion fraction estimation. Our proposed method (red) consis-
tently outperforms alternatives by significant margins.

settings by significant margins. We are also able to achieve
an MAE of 4.37 using a quarter of the labels, which is only a
relative 5.8% higher than the 4.13 MAE achieved by Ouyang
et al. on fully labeled data. Our proposed method therefore
reduces the number of labels required for training which is
highly valuable for medical regression tasks.

Conclusion
In this work, we introduce a novel Uncertainty-Consistent
Variational Model Ensembling (UCVME) method for semi-
supervised deep regression. Our method improves training
on unlabeled data by adjusting for pseudo-label quality and
improving pseudo-label robustness. We introduce a novel
consistency loss on uncertainty estimates, which we demon-



strate significantly improves heteroscedastic loss weighting,
especially for unlabeled samples. We also use variational
model ensembling to reduce prediction noise and generate
better training targets for unlabeled data. Our method has
strong theoretical support and can be applied to different
tasks and datasets. We demonstrate this using two deep re-
gression tasks based on image and video data and achieve
state-of-the-art performance for both. Results are also com-
petitive with supervised methods using full labels. UCVME
is therefore a valuable method for reducing the amount of
labels required for deep regression tasks.
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