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ABSTRACT: Dissolved organic matter (DOM) sustains a
substantial part of the organic matter transported seaward, where
photochemical reactions significantly affect its transformation and
fate. The irradiation experiments can provide valuable information
on the photochemical reactivity (photolabile, photoresistant, and
photoproduct) of molecules. However, the inconsistency of the
fate of irradiated molecules among different experiments curtailed
our understanding of the roles the photochemical reactions have
played, which cannot be properly addressed by traditional
approaches. Here, we conducted irradiation experiments for
samples from two large estuaries in China. Molecules that
occurred in irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry and
assigned probabilistic labels to define their photochemical reactivity. These molecules with probabilistic labels were used to construct
a learning database for establishing a suitable machine learning (ML) model. We further applied our well-trained ML model to “un-
matched” (i.e., not detected in our irradiation experiments) molecules from five estuaries worldwide, to predict their photochemical
reactivity. Results showed that numerous molecules with strong photolability can be captured solely by the ML model. Moreover,
comparing DOM photochemical reactivity in five estuaries revealed that the riverine DOM chemistry largely determines their
subsequent photochemical transformation. We offer an expandable and renewable approach based on ML to compatibly integrate
existing irradiation experiments and shed insight into DOM transformation and degradation processes.
KEYWORDS: dissolved organic matter, machine learning, molecular composition, photochemistry, estuarine carbon cycling

1. INTRODUCTION
Dissolved organic matter (DOM) is one of the largest reactive
carbon pools on the earth, and its chemical composition and
reactivity are closely associated with aquatic carbon and
nutrient cycling,1,2 trace-element transport,3 microbial metab-
olism,4 and reactions with environmental contaminants.5

Photochemical reactions (photoproduction and photodegra-
dation) are essential components altering DOM chemistry, by
directly mineralizing it to CO2 or indirectly inducing its
biogeochemical function changes for subsequent microbial
mediation.6−9 The state-of-the-art ultrahigh resolution mass
spectrometry, Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR MS), can unprecedentedly provide
thousands of molecular formulas (MFs) within one DOM
sample and provide an opportunity to directly link the
molecular chemical composition and photochemical reactiv-
ity.10,11 Previous studies demonstrated significant DOM
compositional conversions after photoirradiation,12,13 and the
MFs linked to photochemical processing are operationally
classified as photoresistant, photolabile, and photoproduct

types according to their occurrence before and after irradiation
experiments.14,15

To study the potential photochemical reactivity of samples
without employing irradiation experiments, a favorable practice
is to compare the MFs occurring in samples from various
aquatic ecosystems with the classified MFs acquired from
previously performed irradiation experiments.16−19 Despite the
success of this “molecular matching” approach in evaluating
the photochemical quality of the samples, many concerns
remain. First, considering the complexity of the DOM
transformation, the relationship between the classes of
photochemistry related MFs and their chemical composition
is complicated and probably nonlinear, which cannot be simply
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elucidated through the molecular matching approach. Different
MFs may share comparable photochemical reactivity for their
inherently similar chemical compositions. Significant amounts
of MFs with potential photochemical reactivity would be
neglected through a simple matching approach, i.e., MFs
detected in the field but not in limited irradiation experiments.
Second, the initial samples supporting the irradiation experi-
ments were collected from varying aquatic ecosystems (e.g.,
rivers, estuaries, and open oceans). It will be risky to directly
match MFs derived from samples with different background
information when depending on the result from individual
experiment. More importantly, there will be “label conflicts”
when considering more than one irradiation experiment, which
means inconsistency of the assignments of MFs into specific
photochemical types. For instance, a MF assigned as a
photoresistant molecule in one irradiation experiment can be
alternatively assigned as a photolabile or photoproduct MF in
another, leading to an ambiguous understanding of the
photochemical reactivity of specific MFs. As such, molecular
matching alone could likely lead to biased estimates of the
photochemical reactivity of specific MFs among different
samples (e.g., with a different number of “un-matched”
formulas). It is urgent to reconcile the above predicament
and contribute to the broader applications of existing
photochemical irradiation experiment results.

In contrast to the “matching” approach to deal with complex
molecular composition data, machine learning (ML) method-
ologies can learn from large, complex, and multidimensional
data to develop predictive models and have proven to be
promising tools for handling nonlinear correlations between
the learnable features and target labels. Its goal is to
continuously extract internal knowledge from the data during
the learning process and make the model resemble the human
thought process, thereby enhancing the predictive power.20

Multiple instances have demonstrated that ML techniques can
be applied to earth and environmental science.21−23 As the
amount of data collected has increased, it has become
increasingly difficult to manually analyze and extract
information from these massive data sets. Therefore, it is
crucial to develop an intelligent system capable of acquiring
and interpreting vast amounts of data more efficiently. This
does not imply that traditional expert opinions will be
abandoned but rather that the collected data will be better
understood, and new perspectives will be offered. Intelligent
systems can help us discover unseen relationships between
features to better comprehend the outcomes of photochemical
experiments conducted thus far.

To overcome the above limitations of the molecular
matching approach, we explored the applicability of multiple
ML techniques and established well-trained random forest
regression models to investigate the underlying relationship
between the chemical composition and photochemical
reactivity of MFs. Four photoirradiation experiments covering
freshwater and seawater samples from two large estuaries in
China, the Yangtze River Estuary (YRE) and Pearl River
Estuary (PRE), were conducted. To prevent the “label
conflicts” problem, instead of assigning MFs a “hard label” of
a specific type (photoresistant, photolabile, or photoproduct),
we calculated the ratio of times where they occurred as one of
three types to the total times where they were detected in the
four irradiation experiments to obtain “soft labels” with
probability. The photochemical reactivity of MFs which
could not be matched in five estuaries worldwide (YRE,

PRE, Delaware Estuary, Daliao River Estuary, and Jiulong
River Estuary) were predicted by our well-trained models, and
the photochemical specificity of DOM was further assessed
within and across five estuaries.

By combining the benefits of molecular composition
information and ML approaches, we aim to (i) offer an
expandable approach to compatibly integrate existing irradi-
ation experiments for their boarder applications; (ii) explore
the MFs behaviors during the photochemical processing from a
novel perspective, and (iii) semiquantitatively assess the spatial
variations of DOM photochemical reactivity and its geo-
chemical implications in estuarine environments.

2. SAMPLES AND ANALYTICAL METHODS
2.1. Molecular Formular Data Set Generated by FT-

ICR MS. The samples for photoirradiation experiments were
collected from two large estuaries (YRE and PRE) in July
2017. The water sample collecting details for the Daliao River
Estuary (DLE, November 2016), the Delaware Estuary (DWE,
August 2012), and the Jiulong River Estuary (JRE, July 2014
and May 2015) can be found from previous case research.24−26

Two surface endmember samples obtained from each estuary
(YRE-F, YRE-S, PRE-F, and PRE-S) were specially subjected
to photoirradiation treatments (detailed in Supporting
Information 1.1 and Figure S1). The irradiated samples were
prefiltered with 0.2 μm precleaned polycarbonate membranes
(Millipore). Although the microbial activities could not be
completely prevented, previous biological incubation compar-
isons demonstrated only trivial changes in the bacterial
abundance after filtering during the 14-day observation,
implying that bacteria-dominated microbial activities did not
serve as the primary factor controlling DOM transforma-
tion.27,28 We suggest that constant monitoring of the bacterial
abundance during photoirradiation would be better in future
research.

The FT-ICR MS analysis followed our matured protocols
(Supporting Information 1.2). Relative peak intensities were
calculated based on the sum-normalized intensities of all
assigned peaks in each sample. A total of 8686 unique MFs
were detected before or after the four photoirradiation
experiments and utilized to construct the ML model, which
were set as the learning data set. We referred to them as
“learned MFs” in this study if not specified otherwise. A total
of 7590 unique MFs from five estuaries could not be matched
by the detected MFs in irradiation experiments and set as the
prediction data set. Their photochemical reactivity would be
predicted after the development of the model. We referred to
them as “predicted MFs” if not specified otherwise (Figure
S2).

Multiple molecular parameters such as the elemental ratios
(O/C, H/C, N/C, and S/C), modified aromatic index (AImod),
equivalent double bond number (DBE), and nominal
oxidation state of carbon (NOSC) were calculated based on
previous literature.8 The MFs identified were operationally
classified into different compounds according to parameter
ranges, including polycyclic condensed aromatics (PCAs),
polyphenols, highly unsaturated compounds (HU), unsatu-
rated aliphatic compounds (UA), peptides, and carboxyl-rich
alicyclic molecules (CRAM;29,30 detailed in Supporting
Information 1.2).

2.2. Data Set Preparation for Machine Learning. The
MFs were preliminarily classified as photoresistant, photolabile,
and photoproduct MFs according to their occurrence before
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and after each irradiation experiment (detailed in Supporting
Information 1.2 and Figure S3). In this step, it is noted that an
MF can be assigned as more than one type. To overcome the
“label conflict” problem, we alternatively assigned it a three-
element vector label by calculating the probability that they
occurred as three types (photoresistant, photolabile, and
photoproduct) in the four irradiation experiments instead of
assigning each MF a hard label (Figure S4). For instance, when
an MF was classified into photoresistant, photolabile, and
photoproduct types for two, one, and one times, respectively,
its target label was denoted as [0.5, 0.25, 0.25]. Consequently,
there would be seven potential labels assigned to learned MFs
for each photochemical reactivity type: 0, 0.25, 0.33, 0.5, 0.67,
0.75, and 1 (Figure S4). Fifteen classically established
parameters (the number of C, N, O, N, S atoms; O/C, H/
C, N/C, S/C, AImod, DBE, DBE/C, DBE/O, and NOSC)
depicting the fundamental molecular properties were selected
for the training features. The selected 15 classic parameters
cover the molecular information in different dimensions
(Supporting Information 1.2), including the elemental
composition (the number of atoms), van Krevelen (V−K)
plot parameters (O/C and H/C), heteroatomic compounds
composition (S/C and N/C), molecular mass (m/z),
aromaticity degree (AImod and DBE), oxidation state
(NOSC), and integrated information (DBE/C and DBE/O).
The parameter ranges of learned MFs are shown in Table S1.

Briefly, X ⊂ d (d = 15) is the input feature values; an
instance could be represented as a vector of d feature values x
= [x1,...,xd]. For each instance x, it has a target label y =

[y1,y2,y3] (in which y1 + y2 + y3 = 1, where yj represents
photoresistant, photolabile, and photoproduct class, respec-
tively). The training data contains N labeled molecules, where
yi is a probabilistic label of the ith instance; yj

i is the probability
of the ith instance belonging to the jth label.

2.3. Construction and Comparison of Multiple
Machine Learning Models. Multilabel regression was
selected to address this issue. It selected the same type of
ML model, conducted the regression separately for each label,
and then combined the results of multiple labels. The learning
data set was divided into the training data set (80%) and the
testing data set (20%). We employed sophisticated autosearch-
ing technique Hyperopt-Sklearn31 to fine-tune our models. We
conducted the hyperparameter search on five types of ML
models and use three evaluation indices (R2, MAE, MSE) to
evaluate the performance of the models. Random forest (RF),
linear regression (LR), K-nearest neighbors regression (KNN),
ridge regression (RR), and support vector machine regression
(SVR) were the five machine learning models employed (see
Supporting Information 1.3 for details). See Figure 1 for the
flowchart of our ML implementation process. Through the
hyperparameter search (including K-fold verification, K = 5),
the model with the highest score for each label was identified,
and the regression results were obtained by predicting on our
test data set. Each model was evaluated using three indicators,
R2, MAE, and RMSE (Supporting Information 1.3). We
normalized (each probability was divided by the sum of the
three types) the probabilities of three types of photochemical
types at the end to ensure that the sum of the probabilities of

Figure 1. Flowchart of this research.
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the output is equal to 1. We used the SHAP approach to
evaluate the contributions of input features in constructing
each model (see Supporting Information 1.3 for details).32,33

2.4. Estimation of the Photochemical Reactivity of
DOM Samples. There would be two kinds of probabilistic
patterns of MFs after completing the ML prediction. The
probabilistic labels of 8686 learned MFs were discrete values
derived from the prior knowledge of irradiation experiments.
In contrast, the probabilistic labels of the 7590 predicted MFs
were continuous values forecasted by the RF model, ranging
from 0 to 1. After obtaining the probabilities of all MFs, we
further calculated the relative intensity of each type in DOM
samples to semiquantitatively assess their photochemical
reactivity in case studies. To be specific, supposing that N
MFs were detected in a sample, and for the ith MF, its relative
intensity within a sample is Ii, and its probability label is yi =
[y1i , y2i , y3i ], the relative intensity Iphotochemistry‑type of this sample
would be calculated as in the following equations:

=
=

I y I
i

N
i i

Photoresistant
1

1

=
=

I y I
i

N
i i

Photolabile
1

2

=
=

I y I
i

N
i i

Photoproduct
1

3

And considering that our strategy to define the y labels, the
sum of y1, y2, and y3 for MFs in both the learning and
prediction data set equals to 1, we can know that:

+ + =I I I 1Photoresistant Photolabile Photoproduct

3. RESULTS AND DISCUSSION
3.1. Model Performance. The performance of five ML

models is shown in Figure S5 and Table S2. The performance
of different models varies greatly. The nonlinear models (RF,
SVR, and KNN) basically outperform linear models (LR and
RR), suggesting the complex constraints of molecular
composition to DOM photochemical reactivity. RF achieved
the best results on the three photochemical reactivity types
with the highest R2 and lowest MAE and RMSE on the testing
data set. Therefore, RF was selected as the final prediction
model in this study. As an ensemble model involving a network
of decision trees by a bootstrap technique, RF maintains the
interpretability of the decision tree for the total multiple
regressors, which have a high level of accuracy.34 This increases
the confidence of users in the model’s decisions. It has
significant benefits, including the ability to reduce the
overfitting issue in the original decision tree, automatically
process missing values in the data, and eliminate the need to
normalize the data. The R2 values for the photoresistant,
photolabile, and photoproduct RF models were 0.81, 0.75, and
0.68, respectively.

3.2. Suitability and Sustainability of the Approach.
Traditionally, machine learning tasks have been separated into
supervised and unsupervised learning. Generally, labeled data
tasks belong to supervised learning problems. Supervised
learning can be subdivided into classification and regression
tasks.35 Supervised approaches have been applied to the MFs
classification in drinking water reservoirs’ DOM.36 They first

utilized the Spearman’s rank correlation to link the molecular
intensities and the environmental parameter (e.g., chlorophyll
concentration or solar irradiation dose) to obtain the
coefficients. By constructing the ML model where the features
were also the molecular parameters, and the target labels were
coefficients, the coefficients of MFs with insufficient environ-
mental parameters were predicted, and the MFs were further
classified into photochemical or microbial products based on
their coefficients. This approach has strengths in distinguishing
the impacts induced by photochemical or microbial degrada-
tion. Nevertheless, we must note that the correlation analyses,
including the popular Pearson correlation or Spearman’s rank
correlation, may not suggest a direct causal link. Providing
more professional prior knowledge can be more reasonable to
investigate the behaviors of MFs during degradation processes.
In this study, we acquired the photoresistant, photolabile, and
photoproduct types on the basis of the irradiation experiments,
which provides relatively direct evidence to further disentangle
the complex photochemical reactivity of MFs and bulk DOM.

According to the prior knowledge of irradiation experiments,
individual irradiation experiments can provide operationally
unambiguous classification (photoresistant, photolabile, and
photoproduct) of MF. The task to predict the photochemical
reactivity of unmatched MFs is supposed to be the
classification problem from an intuitive thought. However,
multiple factors control the fate of MFs in irradiation
experiments (e.g., irradiation dose, incubation days, initial
DOM chemistry, and molecular interactions), suggesting that
the “labels conflicts” problem will inevitably emerge when
more experiments are conducted. One plausible solution is to
learn the common MFs that reserved the same photochemical
reactivity in all experiments instead. But we can observe from
the results of four experiments that only five and 42 common
MFs for photolabile and photoproduct types can be found
(Figure S3), respectively, suggesting that extremely limited
MFs are available to learn. Another option is to introduce the
idea of the “probabilistic label,”37,38 which differs from the
conventional hard label in that it provides a probability for
each target class. When the experiments are very limited, the
multiclass classification (Supporting Information 1.3) based on
the probabilistic labels for each class can address part of the
concerns. For instance, we can assign the MFs into six classes
and classify unknown MFs when only two experiments are
conducted (Figure S6). Unfortunately, we can expect that the
number of classes will explode when we conduct numerous
experiments (e.g., for only four experiments, there will be at
most 22 classes), and the number of MFs within some classes
would be very limited, which will weaken the performance and
robustness of the classification algorithms. Therefore, consid-
ering both the suitability and sustainability of the potential
approaches, we believe that the hard-label classification
protocols are not capable of effectively resolving the
predictions based on the irradiation experiments.

To overcome the above difficulties and ensure the
sustainability of the approach, we comprehensively took
advantage of the ideas of the regression tasks and probabilistic
labels. With a prerequisite of the probabilistic labels acquired
from experiments, we predicted the probabilities of undetected
MFs (not detected in experiments) for each type by regressing
algorithms. Although only seven possible probabilistic labels
are available from four experiments, the quantity of labels
would increase with increasing prior knowledge (i.e., more
irradiation experiments), meaning more accurate labels
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assigned to MFs, and thus more experiments now can be
compatibly involved in our approach to promote the predicting
capability.

3.3. The Photochemical Reactivity of MFs in Five
Estuaries Worldwide. As specified in the Methods, the final
output of the predicted MFs would be a three-element vector
where each element represents the probability that MFs tend
to be classified into a photochemical type (photoresistant,

photolabile, and photoproduct). The threshold 0.33 and 0.67
probabilities were operationally selected as criteria to visualize
the photochemical reactivity of MFs. We plotted all 16 276
MFs from five estuaries worldwide, including 8686 learned
MFs and 7590 predicted MFs, into the V−K plots according to
their probabilities of three types of photochemical reactivity
(Figure 2 and Figure S7) to exhibit the transitions of MFs with
increasing probability for each type. We further lent the

Figure 2. Comparisons between the learned and predicted molecular formulas with the increasing probability of three types of photoreactivity.

Figure 3. Comparison of three molecular pools with explicit (probability > 0.95) photochemical reactivity.
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concept of the 95% conf idence level from the probability, and a
0.95 probability threshold was operationally set to acquire the
MFs with “explicitly” photochemical properties. Consequently,
1640, 4660, and 1533 MFs with explicit (probability > 0.95)
photochemical properties of photoresistant, photolabile, and
photoproduct were determined, respectively, and they made up
three explicitly photochemical molecular pools.

The average molecular parameters and the proportions of
the compound group in the three explicit pools were further
calculated (Figure 3). The difference of parameters in three
photochemical pools was tested using one-way ANOVA.
Significant differences (p < 0.01) in O/C, H/C, AImod, DBE,
and m/z were observed among three pools. The average AImod
and DBE, indicative of aromatic and humification degree, were
greater (0.45 and 12.73) in the photolabile pool than the other
two pools, whereas the photoproducts were characterized as
higher average H/C (1.44) and O/C (0.66) ratios among the
three pools. The highest proportions (by number) of CHO,
CHON, and CHOS compounds (30%, 51%, and 18%) were
observed in the photoresistant, photoproduct, and photolabile
pools, respectively. Regarding the compound groups, PCAs
and polyphenols together accounted for nearly 50% of the
photolabile pool, contrasting that less than 10% were found
from the other two pools. The photoproduct pool had a
significantly higher proportion of peptide-like groups (31%)
than the photoresistant pool (2%) and photolabile pool (1%).
Likewise, the HU represented over 75% of the photoresistant
pool. The CRAM was also dominant (59%) in the photo-
resistant pool, compared with less than 40% in the others.

The DOM chemistry is expected to control its reactivity to
photodegradation. For instance, for aromatic DOM, charac-
terized by the molecular signatures of low O/C and H/C
ratios,39 its absorption of sunlight is likely responsible for the
degradation of aromatic, high-molecular-weight compounds
into aliphatic and lower-molecular-weight compounds.39−41

The fate of the irradiated DOM can be either completely
oxidized to CO2 or partially oxidized to stimulate bacterial
respiration,40,42,43 where the partial processing can incorporate
the oxygen into DOM through carboxylation with the
conversion of ketone and aldehyde to carboxyl and
consequently increase its O/C ratio.44 Analysis of three
explicitly photochemical molecular pools (probability > 0.95)
indicated that explicitly photolabile MFs exhibited higher
aromatic and humifaction degree (Figure 3), which is
consistent with previous irradiation-based studies,14,15,45 also
suggesting that the partially oxidized processes are probably
predominant in estuarine ecosystems. Moreover, the photo-
labile pool had the highest CHOS% among the three pools
(Figure 3 and Figure 4), supporting its facile photochemical
degradation as reported from the deep sea,14,46 porewater,18

and acid mine drainage,47 with the potential products of
climate-impacting gases carbonyl sulfide, dimethyl sulfide, or
methanesulfonic acid. Significant amounts of N-containing
compounds produced after photoirradiation were also found in
samples from both natural and anthropogenic sources and
were interpreted by the photoinduced incorporation of
dissolved organic nitrogen into DOM.18,48 The photoresistant
pool was dominated by the HU group (Figure 3) that is also
known to be biologically recalcitrant to heterotrophic
microbes.30 Consistently, a substantial fraction of the CRAM
found in the photoresistant pool, which is believed to be a
significant component of the marine refractory dissolved
organic carbon pool,31 implies that most of the photochemi-

cally recalcitrant DOM can be simultaneously biologically
recalcitrant.

We selected the MFs with probability > 0.95 to conduct
SHAP analysis to eliminate potential effects of less strong data
points (i.e., MFs with ambiguous photochemical reactivity).
The SHAP revealed that the AImod, DBE, DBE/O, O/C, and
N/C were tightly associated with the molecular photochemical
reactivity upon the construction of models (Figure 4). As
discussed above, the AImod, DBE, and O/C have been widely
used to evaluate structural or oxidation degree conversions
induced by photochemical reactions.13−15 It is worthy to note
that the partial photo-oxidation has an opposite impact on the
aromaticity degree and oxidation degree of MFs, and thus the
DBE/O (i.e., the ratio of aromaticity degree to the oxygen
atom number) is probably more sensitive to the photoinduced
effects, which exerted a more significant influence on the
model construction (Figure 4). Meanwhile, the elemental
composition N/C is a bulk and classic indicator to discriminate
the terrestrial (lower N/C) and marine source (higher N/C)
of DOM. The high importance of N/C confirms the
hypothesis that the source of DOM controls its fate during
irradiation. The Spearman’s correlation analysis also showed
that most of the important features of each model significantly
(p < 0.01) correlated with model outputs in the testing data set
(Table S3). Therefore, the importance of these molecular

Figure 4. (a−c) The V−K plots for the molecules with explicit
(probability > 0.95) photochemical reactivity. (d−f) The Shapley
values of MFs with explicit photochemical reactivity (probability
>0.95) for the photoresistant, photolabile, and photoproduct models.
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features collectively reconfirms the reliability of our models
from a geochemical view.

3.4. The Comparisons between the Learned and
Predicted MFs. Significant differences among different
photochemical molecular pools were observed when compar-
ing the learned and predicted MFs (Figure 2 and Figure S8).
Due to our strategy to assign labels, only seven possible
probabilities for each type existed for the learned MFs.
Therefore, the probability over 0.95 for the learned MFs means
the probability was actually 1, suggesting that they only
occurred as one type at least once in the four irradiation
experiments. There were 1640, 2626, and 1340 learned MFs
with a probability of 1 for the photoresistant, photolabile, and
photoproduct types, respectively. Meanwhile, 2034 and 193
MFs were predicted as explicitly (probability > 0.95)
photolabile or photoproduct types, respectively, whereas no
predicted MFs possessed an over 0.95 probability for the
photoresistant type. The statistical histograms compared the
frequency distributions of probability between learned and
predicted MFs, also indicating that predicted MFs had greater
(e.g., over 0.5) probability for the photolabile type.

We compared the learned and predicted MFs with explicit
photochemical reactivity (i.e., probability over 0.95) in terms
of their molecular parameters and compound groups (Figure
S9). Results showed that, for the explicitly photolabile pool,
predicted MFs had higher average AImod, DBE, and m/z;
higher PCAs % and polyphenols %; lower average H/C and
O/C; and lower UA % and peptides % than learned MFs.
Adversely, the predicted MFs in the explicit photoproduct pool
were imprinted as higher average O/C and H/C; higher UA %
and peptides %; lower average AImod, DBE, and m/z; and fewer
PCAs % and polyphenols %. As a result, the molecular
disparity between the photolabile pool and the photoproduct
pool for learned MFs was strengthened for predicted MFs
(Figure S9).

A high proportion (2034 out of 4660) of predicted
photolabile MFs with a probability over 0.95 suggests that
four irradiation experiments conducted in the YRE and PRE
can only capture limited photolabile MFs. As shown in the
lower left corner of V−K plots, numerous MFs with lower O/
C and H/C ratios were predicted as the photolabile type
(Figure 3). Similar evidence was observed from the PCA and
polyphenol compound groups with the primary origin of
incomplete combustion of biomass and terrestrial inputs,30,49,50

where the sum of their proportions in the predicted
photolabile pool represents over 60% compared with the
30% in the learned photolabile pool. As such, the predictions
of photolabile MFs are reasonable regarding the domain
knowledge (e.g., previous irradiation experiments based
study14,15). Further examination reveals that the highly
aromatic MFs in the prediction data set were mainly from
DWE and JRE (Table S4), where corresponding samples have
a higher photolabile relative intensity (Figure S10). Therefore,
the heterogeneity of the photolabile MFs among estuaries is
likely due to varying land-use situations, upstream inputs, and
anthropogenic activities,51,52 which also largely lead to the
strengthened disparity between the photolabile and photo-
product pool for predicted MFs. Meanwhile, we would expect
an underestimation of photolabile relative intensity if only
directly matching MFs from an irradiation experiment to other
estuaries.

By contrast, the presence of few or even no predicted MFs
into explicitly photoproduct or photoresistant pool indicates

the relative homogeneity of these two kinds of MFs in
estuarine environments. Compared with photolabile MFs,
photoresistant and photolabile MFs could be easily captured
by our four irradiation experiments for YRE and PRE samples.
In addition to the spatial distributions of explicitly predicted
photolabile MFs, predicted photoproduct MFs were mainly
from DLE and DWE (Table S4). Although samples from
DWE, DLR, and JRE were not implemented for irradiation
experiments, the photochemical reactivity of their MFs can be
successfully predicted by our ML models.

In this study, the parameter range of a fraction of predicted
MFs could be outside the range of learned MFs, while the
parameter ranges of these out-of-range MFs are on the same
order of magnitude as the learned MFs. We can use the range
of learned MFs to define the model’s applicability domain
(Table S1). However, after carefully examining the predictions
of out-of-range MFs by using well-recognized domain
knowledge, it is revealed that their predictions are reasonable
regarding the previous irradiation experiment-based research
(details in Table S5). Therefore, we believe that the
predictions for out-of-range MFs are reliable in this research,
and we recommend that future applications of this approach
also carefully examine the predictions of out-of-range predicted
MFs to ensure validity.

3.5. Spatial Variations in Photochemical Reactivity of
DOM among Estuaries. As defined in the methods, we
calculated the relative intensity of three types of MFs within a
sample, although MFs were no longer regarded to have unique
photochemical reactivity due to the probabilistic labels. In the
102 samples from five river-dominated estuaries across the
world, the average relative intensity of photoresistant, photo-
labile, and photoproduct MFs were 79 ± 10%, 14 ± 7%, and 7
± 3%, respectively (Figure S10). Significant differences among
estuaries were also observed. The average relative intensity of
five estuaries varies from 67% to 89%, 7% to 22%, and 4% to
11% for the photoresistant, photolabile, and photoproduct
types, respectively. The regression slope, intercept, r square,
and p value are shown in Table S6, and the extrapolated
relative intensities at salinity 35 were also calculated to evaluate
the photochemical reactivity of DOM samples under nearby
seawater environments.

Previous research preliminarily evaluated the spatial
variability of photochemical reactions in the Amazon River
plume by principal component analysis.21 However, dimension
reduction likely leads to the loss of original information, and
the interpretation to principal components is commonly
speculative. The results of principle component analysis are
also difficult to directly apply when conducting cross-system
research. By assigning MFs a probabilistic label, we can
semiquantitatively assess the spatial variations of samples upon
photochemical reactivity along the salinity gradient from the
same estuary and among estuaries. The significantly (p < 0.01)
negative correlations between the photolabile relative intensity
and salinity prevailed for all five estuaries, suggesting that the
photolability of DOM significantly decreases when the organic
matter is transported seaward (Figure S10). This could be
caused by both the source variations and the photochemical
transformation. With the addition of seawater, the source of
DOM would be gradually dominated by fresh in situ
productions which have less photolability as reported in the
Amazon River plume and the YRE.21,53 Meanwhile, we plotted
the correlations between the relative intensity of photo-
chemical reactivity types and the water turbidity in the DWE
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(Figure S11). Results showed that the relative intensity of
photolabile MFs increased with turbidity while an inverse
correlation was observed for the photoproduct and photo-
resistant type, supporting that photoinduced degradation will
decrease the relative intensity of the photolabile type with the
improving water transparency (decrease of turbidity) from the
river to the coastal seas.

By contrast, the photoresistant relative intensity positively
correlated with the salinity significantly (p < 0.01).
Considering an explicitly photoresistant pool includes a large
portion of CRAM (Figure 4); this fraction of DOM could be
further transported to the open oceans and constitute a part of
the long-term sequestrated organic carbon in the ocean
interior.1,54 Similarly, a large fraction of CRAM was also
found in the photoresistant pool from the North Atlantic deep
water (NADW) or saltmarsh porewater irradiation experi-
ment,14,18 which partly supports the carbon sink role of this
fraction of photo- and bio-recalcitrant DOM. Compared with
the photolabile and photoresistant types, the variations of
photoproduct relative intensity along the salinity gradient are
relatively small. The correlation between the latitudes of
estuaries (assuming a gradient of photoirradiation intensity)
and their photoproduct relative intensity was not found
(Figures S1 and S10), hinting that other factors on the
regionally spatial scale likely play a more significant role in the
photoproducts. Moreover, the order of the relative intensity for
the same type in five estuaries has little change from the
freshwater to the seawater end member (Figure S10 and Table
S6), suggesting that the initial chemical composition of the
riverine end member largely determines their DOM spatial
variations upon photochemical reactivity in estuaries. Although
DOM must also experience other physical and biogeochemical
transformation processes than photochemistry during trans-
portation, the riverine inputs have major impacts on shaping
the differences of photochemical reactivity among estuaries.

3.6. Limitations and Further Directions. In recent years,
deep learning has garnered special attention within the field of
machine learning. Typically, it needs to use the linear layer as
the output layer of the model and output the probability of
multiple labels using the activation function. Deep belief
networks55 have been utilized for multilabel classification, but
research on regression tasks is rare. However, the black-box
nature of the deep learning model makes it difficult for
individuals to discern which features the model is acquiring.
Moreover, in the absence of sufficient data for the deep
learning, the under-fitting phenomenon likely will occur.
Therefore, we opted to experiment with conventional machine
learning models in this study. We expect further development
of deep learning algorithms preserving more robustness to deal
with the probabilistic outputs.

The generalization and specificity of the ML model compete
to some extent, which largely depends on the selections and
matching degree of the learning and prediction data set. In this
study, we conducted irradiation experiments with samples
collected from end members of estuaries with contrasting
physical and biogeochemical conditions (i.e., freshwater and
seawater) to cover the estuarine environment, achieving a
better generalization capability to predict the MFs in other
estuaries. On the other side, to get a better specificity, i.e.,
more precise constraint of MFs from a specific environment
instead, we recommend that the potential practices consider
keeping the consistency for the conditions under which the
MFs are obtained, meaning that initial samples for the

irradiation experiments and predicted samples are preferably
collected from similar environments. In other words, although
we could perform irradiation experiments in other aquatic
environments (e.g., inland water, deep ocean), they are not
suitable for this study, which was specially designed to
elucidate the roles of photochemical processing in estuarine
carbon cycling.

There are still some limitations in this study. First, we
initially classified the MFs upon photochemical reactivity based
on their occurrence before and after the irradiation experi-
ments without considering the variations of their relative
intensity, which also represent the photochemical reaction-
induced impacts.56 Second, although FT-ICR MS has the
powerful resolution to identify MFs, the information on
isomeric-level and structural conversions under photoirradia-
tion cannot be probed and deserve further investigation by ion
mobility mass spectrometry or tandem mass spectrometry.57

Moreover, in addition to molecular composition, molecular
interactions probably influence the fate of MFs during
irradiation. Recent research is working on the molecular
network analysis by using advanced algorithms, such as the
“PMD-based reactomics,”58 trying to estimate the molecular
interactions.59,60 However, to the best of our knowledge,
current studies are still premature to provide well-established
parameters describing the intermolecular interactions. We shall
continue to work for it to make the model consider more
aspects.

Even though the above limitations require further efforts, we
have offered a compatible approach to integrate existing
multiple irradiation experiments to overcome their incon-
sistency known as “label conflicts” and understand the
photochemical reactivity of MFs from a novel perspective.
We successfully predict the MFs which cannot be matched by
limited irradiation experiments and further provide insight into
the photodegradation processes of DOM. Moreover, the ML
model can be further updated with the addition of more
irradiation experiments, which will also increase the accuracy
of the prediction results. The ML model will be incorporated
into a development platform (www.dom-dream.com) for
serving DOM researchers. We believe this approach can be
expanded to biological incubation or adsorption/desorption
experiments which also suffer from the “label conflicts”
problem with increasing experiments.
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W.; Wilske, C.; Friese, K.; Boehrer, B.; Reemtsma, T.; Rinke, K.;

Lechtenfeld, O. J. Improved Understanding of Dissolved Organic
Matter Processing in Freshwater Using Complementary Experimental
and Machine Learning Approaches. Environ. Sci. Technol. 2020, 54
(21), 13556−13565.
(37) Peng, P.; Wong, R. C.W.; Yu, P. S. Learning on Probabilistic

Labels. In Proceedings of the 2014 SIAM International Conference on
Data Mining (SDM); Society for Industrial and Applied Mathematics,
2014; pp 307−315.
(38) Ji, H. K.; Sun, Q. S.; Ji, Z.-X.; Yuan, Y.-H.; Zhang, G.-Q.

Collaborative probabilistic labels for face recognition from single
sample per person. Pattern Recognition 2017, 62, 125−134.
(39) Helms, J. R.; Stubbins, A.; Ritchie, J. D.; Minor, E. C.; Kieber,

D. J.; Mopper, K. Absorption spectral slopes and slope ratios as
indicators of molecular weight, source, and photobleaching of
chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53
(3), 955−969.
(40) Cory, R. M.; McKnight, D. M.; Chin, Y.-P.; Miller, P.; Jaros, C.

L. Chemical characteristics of fulvic acids from Arctic surface waters:
Microbial contributions and photochemical transformations. Journal
of Geophysical Research: Biogeosciences 2007 , 112 (G4),
DOI: 10.1029/2006JG000343.
(41) Mann, P. J.; Davydova, A.; Zimov, N.; Spencer, R. G. M.;

Davydov, S.; Bulygina, E.; Zimov, S.; Holmes, R. M. Controls on the
composition and lability of dissolved organic matter in Siberia’s
Kolyma River basin. Journal of Geophysical Research: Biogeosciences
2012, 117 (G1), DOI: 10.1029/2011JG001798.
(42) Judd, K. E.; Crump, B. C.; Kling, G. W. Bacterial responses in

activity and community composition to photo-oxidation of dissolved
organic matter from soil and surface waters. Aquatic Sciences 2007, 69
(1), 96−107.
(43) Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W. Carbon

cycle. Sunlight controls water column processing of carbon in arctic
fresh waters. Science 2014, 345 (6199), 925−8.
(44) Cory, R. M.; McNeill, K.; Cotner, J. P.; Amado, A.; Purcell, J.

M.; Marshall, A. G. Singlet oxygen in the coupled photochemical and
biochemical oxidation of dissolved organic matter. Environ. Sci.
Technol. 2010, 44 (10), 3683−9.
(45) Gonsior, M.; Peake, B. M.; Cooper, W. T.; Podgorski, D.;

D’Andrilli, J.; Cooper, W. J. Photochemically induced changes in
dissolved organic matter identified by ultrahigh resolution fourier
transform ion cyclotron resonance mass spectrometry. Environ. Sci.
Technol. 2009, 43 (3), 698−703.
(46) Stubbins, A.; Niggemann, J.; Dittmar, T. Photo-lability of deep

ocean dissolved black carbon. Biogeosciences 2012, 9 (5), 1661−1670.
(47) Herzsprung, P.; Hertkorn, N.; Friese, K.; Schmitt-Kopplin, P.

Photochemical degradation of natural organic sulfur compounds
(CHOS) from iron-rich mine pit lake pore waters–an initial
understanding from evaluation of single-elemental formulae using
ultra-high-resolution mass spectrometry. Rapid Commun. Mass
Spectrom. 2010, 24 (19), 2909−24.
(48) Mesfioui, R.; Abdulla, H. A.; Hatcher, P. G. Photochemical

alterations of natural and anthropogenic dissolved organic nitrogen in
the York River. Environ. Sci. Technol. 2015, 49 (1), 159−67.
(49) Coppola, A. I.; Seidel, M.; Ward, N. D.; Viviroli, D.;

Nascimento, G. S.; Haghipour, N.; Revels, B. N.; Abiven, S.; Jones,
M. W.; Richey, J. E.; Eglinton, T. I.; Dittmar, T.; Schmidt, M. W. I.
Marked isotopic variability within and between the Amazon River and
marine dissolved black carbon pools. Nat. Commun. 2019, 10 (1),
4018.
(50) Bao, H.; Niggemann, J.; Luo, L.; Dittmar, T.; Kao, S. J. Aerosols

as a source of dissolved black carbon to the ocean. Nat. Commun.
2017, 8 (1), 510.
(51) Kurek, M. R.; Stubbins, A.; Drake, T. W.; Dittmar, T.; M. S.

Moura, J.; Holmes, R. M.; Osterholz, H.; Six, J.; Wabakanghanzi, J. N.;
Dinga, B.; Mitsuya, M.; Spencer, R. G. M. Organic Molecular
Signatures of the Congo River and Comparison to the Amazon.
Global. Biogeochem. Cy. 2022, 36 (6), e2022GB007301.
(52) Wagner, S.; Riedel, T.; Niggemann, J.; Vahatalo, A. V.; Dittmar,

T.; Jaffe, R. Linking the Molecular Signature of Heteroatomic

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00199
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

J

https://doi.org/10.1016/j.marchem.2021.103955
https://doi.org/10.1021/acs.est.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/2015GB005115
https://doi.org/10.1002/2015GB005115
https://doi.org/10.1007/s00530-020-00733-x
https://doi.org/10.1007/s00530-020-00733-x
https://doi.org/10.1021/acs.est.1c08302?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c08302?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10533-022-00987-9
https://doi.org/10.1007/s10533-022-00987-9
https://doi.org/10.1007/s10533-022-00987-9
https://doi.org/10.2134/jeq2018.09.0330
https://doi.org/10.2134/jeq2018.09.0330
https://doi.org/10.2134/jeq2018.09.0330
https://doi.org/10.3389/feart.2016.00095
https://doi.org/10.3389/feart.2016.00095
https://doi.org/10.1029/2019JG005212
https://doi.org/10.1029/2019JG005212
https://doi.org/10.1029/2019JG005212
https://doi.org/10.1021/acs.est.2c04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.marchem.2015.06.019
https://doi.org/10.1016/j.marchem.2015.06.019
https://doi.org/10.1016/j.gca.2006.03.021
https://doi.org/10.1016/j.gca.2006.03.021
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1021/acs.est.0c02383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c02383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.patcog.2016.08.007
https://doi.org/10.1016/j.patcog.2016.08.007
https://doi.org/10.4319/lo.2008.53.3.0955
https://doi.org/10.4319/lo.2008.53.3.0955
https://doi.org/10.4319/lo.2008.53.3.0955
https://doi.org/10.1029/2006JG000343
https://doi.org/10.1029/2006JG000343
https://doi.org/10.1029/2006JG000343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2011JG001798
https://doi.org/10.1029/2011JG001798
https://doi.org/10.1029/2011JG001798
https://doi.org/10.1029/2011JG001798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00027-006-0908-4
https://doi.org/10.1007/s00027-006-0908-4
https://doi.org/10.1007/s00027-006-0908-4
https://doi.org/10.1126/science.1253119
https://doi.org/10.1126/science.1253119
https://doi.org/10.1126/science.1253119
https://doi.org/10.1021/es902989y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es902989y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es8022804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es8022804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es8022804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.5194/bg-9-1661-2012
https://doi.org/10.5194/bg-9-1661-2012
https://doi.org/10.1002/rcm.4719
https://doi.org/10.1002/rcm.4719
https://doi.org/10.1002/rcm.4719
https://doi.org/10.1002/rcm.4719
https://doi.org/10.1021/es504095c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es504095c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es504095c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-019-11543-9
https://doi.org/10.1038/s41467-019-11543-9
https://doi.org/10.1038/s41467-017-00437-3
https://doi.org/10.1038/s41467-017-00437-3
https://doi.org/10.1029/2022GB007301
https://doi.org/10.1029/2022GB007301
https://doi.org/10.1021/acs.est.5b00525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Dissolved Organic Matter to Watershed Characteristics in World
Rivers. Environ. Sci. Technol. 2015, 49 (23), 13798−806.
(53) Zhou, Y.; He, D.; He, C.; Li, P.; Fan, D.; Wang, A.; Zhang, K.;

Zhao, C.; Chen, B.; Wang, Y.; Shi, Q.; Sun, Y. Spatial changes in
molecular composition of dissolved organic matter in the Yangtze
River Estuary: implications for estuarine carbon cycling. Sci. Total
Environ. 2021, 759, 143531.
(54) Jiao, N.; Robinson, C.; Azam, F.; Thomas, H.; Baltar, F.; Dang,

H.; Hardman-Mountford, N. J.; Johnson, M.; Kirchman, D. L.; Koch,
B. P.; Legendre, L.; Li, C.; Liu, J.; Luo, T.; Luo, Y. W.; Mitra, A.;
Romanou, A.; Tang, K.; Wang, X.; Zhang, C.; Zhang, R. Mechanisms
of microbial carbon sequestration in the ocean − future research
directions. Biogeosciences 2014, 11 (19), 5285−5306.
(55) Read, J.; Perez-Cruz, F. Deep learning for multi-label

classification. arXiv preprint 2014, arXiv:1502.05988.
(56) Stubbins, A.; Mann, P. J.; Powers, L.; Bittar, T. B.; Dittmar, T.;

McIntyre, C. P.; Eglinton, T. I.; Zimov, N.; Spencer, R. G. M. Low
photolability of yedoma permafrost dissolved organic carbon. Journal
of Geophysical Research: Biogeosciences 2017, 122 (1), 200−211.
(57) Lu, K.; Li, X.; Chen, H.; Liu, Z. Constraints on isomers of

dissolved organic matter in aquatic environments: Insights from ion
mobility mass spectrometry. Geochim. Cosmochim. Acta 2021, 308,
353−372.
(58) Yu, M.; Petrick, L. Untargeted high-resolution paired mass

distance data mining or retrieving general chemical relationships.
Commun. Chem. 2020, 3, 1−6.
(59) Liu, J.; Wang, C.; Hao, Z.; Kondo, G.; Fujii, M.; Fu, Q. L.; Wei,

Y. Comprehensive understanding of DOM reactivity in anaerobic
fermentation of persulfate-pretreated sewage sludge via FT-ICR mass
spectrometry and reactomics analysis. Water Res. 2023, 229, 119488.
(60) Wu, G.; Wang, X.; Zhang, X.; Ren, H.; Wang, Y.; Yu, Q.; Wei,

S.; Geng, J. Nontarget screening based on molecular networking
strategy to identify transformation products of citalopram and
sertraline in wastewater. Water Res. 2023, 232, 119509.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00199
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

K

https://doi.org/10.1021/acs.est.5b00525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.5b00525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.scitotenv.2020.143531
https://doi.org/10.1016/j.scitotenv.2020.143531
https://doi.org/10.1016/j.scitotenv.2020.143531
https://doi.org/10.5194/bg-11-5285-2014
https://doi.org/10.5194/bg-11-5285-2014
https://doi.org/10.5194/bg-11-5285-2014
https://doi.org/10.1002/2016JG003688
https://doi.org/10.1002/2016JG003688
https://doi.org/10.1016/j.gca.2021.05.007
https://doi.org/10.1016/j.gca.2021.05.007
https://doi.org/10.1016/j.gca.2021.05.007
https://doi.org/10.1038/s42004-020-00403-z
https://doi.org/10.1038/s42004-020-00403-z
https://doi.org/10.1016/j.watres.2022.119488
https://doi.org/10.1016/j.watres.2022.119488
https://doi.org/10.1016/j.watres.2022.119488
https://doi.org/10.1016/j.watres.2022.119509
https://doi.org/10.1016/j.watres.2022.119509
https://doi.org/10.1016/j.watres.2022.119509
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

