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Abstract. Sparse-view cone-beam CT (CBCT) reconstruction is an
important direction to reduce radiation dose and benefit clinical appli-
cations. Previous voxel-based generation methods represent the CT as
discrete voxels, resulting in high memory requirements and limited spa-
tial resolution due to the use of 3D decoders. In this paper, we formulate
the CT volume as a continuous intensity field and develop a novel DIF-
Net to perform high-quality CBCT reconstruction from extremely sparse
(≤10) projection views at an ultrafast speed. The intensity field of a CT
can be regarded as a continuous function of 3D spatial points. There-
fore, the reconstruction can be reformulated as regressing the intensity
value of an arbitrary 3D point from given sparse projections. Specifically,
for a point, DIF-Net extracts its view-specific features from different 2D
projection views. These features are subsequently aggregated by a fusion
module for intensity estimation. Notably, thousands of points can be
processed in parallel to improve efficiency during training and testing. In
practice, we collect a knee CBCT dataset to train and evaluate DIF-Net.
Extensive experiments show that our approach can reconstruct CBCT
with high image quality and high spatial resolution from extremely sparse
views within 1.6 s, significantly outperforming state-of-the-art methods.
Our code will be available at https://github.com/xmed-lab/DIF-Net.

Keywords: CBCT Reconstruction · Implicit Neural Representation ·
Sparse View · Low Dose · Efficient Reconstruction

1 Introduction

Cone-beam computed tomography (CBCT) is a common 3D imaging technique
used to examine the internal structure of an object with high spatial resolution
and fast scanning speed [20]. During CBCT scanning, the scanner rotates around
the object and emits cone-shaped beams, obtaining 2D projections in the detec-
tion panel to reconstruct 3D volume. In recent years, beyond dentistry, CBCT
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(a.) Parallel and Fan Beam: 1D Projection (b.) Cone Beam: 2D Projection

......

(c.) Sparse-View Projections (d.) Reconstructed CT

Fig. 1. (a-b): Comparison of conventional CT and cone-beam CT scanning. (c-d):
CBCT reconstruction from a stack of sparse 2D projections.

has been widely used to acquire images of the human knee joint for applications
such as total knee arthroplasty and postoperative pain management [3,4,9,15].
To maintain image quality, CBCT typically requires hundreds of projections
involving high radiation doses from X-rays, which could be a concern in clinical
practice. Sparse-view reconstruction is one of the ways to reduce radiation dose
by reducing the number of scanning views (10× fewer). In this paper, we study a
more challenging problem, extremely sparse-view CBCT reconstruction, aiming
to reconstruct a high-quality CT volume from fewer than 10 projection views.

Compared to conventional CT (e.g., parallel beam, fan beam), CBCT recon-
structs a 3D volume from 2D projections instead of a 2D slice from 1D projec-
tions, as comparison shown in Fig. 1, resulting in a significant increase in spatial
dimensionality and computational complexity. Therefore, although sparse-view
conventional CT reconstruction [2,23,25,26] has been developed for many years,
these methods cannot be trivially extended to CBCT. CBCT reconstruction
can be divided into dense-view (≥100), sparse-view (20∼50), extremely sparse-
view (≤10), and single/orthogonal-view reconstructions depending on the num-
ber of projection views required. A typical example of dense-view reconstruc-
tion is FDK [6], which is a filtered-backprojection (FBP) algorithm that accu-
mulates intensities by backprojecting from 2D views, but requires hundreds of
views to avoid streaking artifacts. To reduce required projection views, ART [7]
and its extensions (e.g., SART [1], VW-ART [16]) formulate reconstruction as
an iterative minimization process, which is useful when projections are lim-
ited. Nevertheless, such methods often take a long computational time to con-
verge and cope poorly with extremely sparse projections; see results of SART
in Table 1. With the development of deep learning techniques and computing
devices, learning-based approaches are proposed for CBCT sparse-view recon-
struction. Lahiri et al. [12] propose to reconstruct a coarse CT with FDK and use
2D CNNs to denoise each slice. However, the algorithm has not been validated
on medical datasets, and the performance is still limited as FDK introduces
extensive streaking artifacts with sparse views. Recently, neural rendering tech-
niques [5,14,19,21,29] have been introduced to reconstruct CBCT volume by
parameterizing the attenuation coefficient field as an implicit neural represen-
tation field (NeRF), but they require a long time for per-patient optimization
and do not perform well with extremely sparse views due to lack of prior knowl-
edge; see results of NAF in Table 2. For single/orthogonal-view reconstruction,
voxel-based approaches [10,22,27] are proposed to build 2D-to-3D generation
networks that consist of 2D encoders and 3D decoders with large training param-
eters, leading to high memory requirements and limited spatial resolution. These
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methods are special designs with the networks [10,27] or patient-specific training
data [22], which are difficult to extend to general sparse-view reconstruction.

In this work, our goal is to reconstruct a CBCT of high image quality and
high spatial resolution from extremely sparse (≤10) 2D projections, which is an
important yet challenging and unstudied problem in sparse-view CBCT recon-
struction. Unlike previous voxel-based methods that represent the CT as discrete
voxels, we formulate the CT volume as a continuous intensity field, which can
be regarded as a continuous function g(·) of 3D spatial points. The property of a
point p in this field represents its intensity value v, i.e., v = g(p). Therefore, the
reconstruction problem can be reformulated as regressing the intensity value of
an arbitrary 3D point from a stack of 2D projections I, i.e., v = g(I, p). Based
on the above formulation, we develop a novel reconstruction framework, namely
DIF-Net (Deep Intensity Field Network). Specifically, DIF-Net first extracts
feature maps from K given 2D projections. Given a 3D point, we project the
point onto the 2D imaging panel of each viewi by corresponding imaging param-
eters (distance, angle, etc.) and query its view-specific features from the feature
map of viewi. Then, K view-specific features from different views are aggregated
by a cross-view fusion module for intensity regression. By introducing the contin-
uous intensity field, it becomes possible to train DIF-Net with a set of sparsely
sampled points to reduce memory requirement, and reconstruct the CT volume
with any desired resolution during testing. Compared with NeRF-based meth-
ods [5,14,19,21,29], the design of DIF-Net shares the similar data representation
(i.e., implicit neural representation) but additional training data can be intro-
duced to help DIF-Net learn prior knowledge. Benefiting from this, DIF-Net can
not only reconstruct high-resolution CT in a very short time since only inference
is required for a new test sample (no retraining), but also performs much better
than NeRF-based methods with extremely limited views.

To summarize, the main contributions of this work include 1.) we are the
first to introduce the continuous intensity field for supervised CBCT reconstruc-
tion; 2.) we propose a novel reconstruction framework DIF-Net that reconstructs
CBCT with high image quality (PSNR: 29.3 dB, SSIM: 0.92) and high spatial res-
olution (≥2563) from extremely sparse (≤10) views within 1.6 s; 3.) we conduct
extensive experiments to validate the effectiveness of the proposed sparse-view
CBCT reconstruction method on a clinical knee CBCT dataset.

2 Method

2.1 Intensity Field

We formulate the CT volume as a continuous intensity field, where the property
of a 3D point p ∈ R

3 in this field represents its intensity value v ∈ R. The
intensity field can be defined as a continuous function g : R3 → R, such that
v = g(p). Hence, the reconstruction problem can be reformulated as regressing
the intensity value of an arbitrary point p in the 3D space from K projections I =
{I1, I2, . . . , IK}, i.e., v = g(I, p). Based on the above formulation, we propose
a novel reconstruction framework, namely DIF-Net, to perform efficient sparse-
view CBCT reconstruction, as the overview shown in Fig. 2.
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Fig. 2. Overview of DIF-Net. (a) Given K projections, a shared 2D encoder is used
for feature extraction. (b) For a point p in the 3D space, its view-specific features
are queried from feature maps of different views by projection and interpolation. (c)
Queried features are aggregated to estimate the intensity value of p. (d) During testing,
given input projections, DIF-Net predicts intensity values for points uniformly sampled
in 3D space to reconstruct the target CT image.

2.2 DIF-Net: Deep Intensity Field Network

DIF-Net first extracts feature maps {F1, F2, . . . , FK} ⊂ R
C×H×W from projec-

tions I using a shared 2D encoder, where C is the number of feature channels
and H/W are height/width. In practice, we choose U-Net [18] as the 2D encoder
because of its good feature extraction ability and popular applications in medical
image analysis [17]. Then, given a 3D point, DIF-Net gathers its view-specific
features queried from feature maps of different views for intensity regression.

View-Specific Feature Querying. Considering a point p ∈ R
3 in the 3D

space, for a projection viewi with scanning angle αi and other imaging param-
eters β (distance, spacing, etc.), we project p to the 2D imaging panel of viewi

and obtain its 2D projection coordinates p′
i = ϕ(p, αi, β) ∈ R

2, where ϕ(·) is the
projection function. Projection coordinates p′

i are used for querying view-specific
features fi ∈ R

C from the 2D feature map Fi of viewi:

fi = π(Fi, p
′
i) = π

(
Fi, ϕ(p, αi, β)

)
, (1)

where π(·) is bilinar interpolation. Similar to perspective projection, the CBCT
projection function ϕ(·) can be formulated as

ϕ(p, αi, β) = H

(
A(β)R(αi)

[
p
1

])
, (2)

where R(αi) ∈ R
4×4 is a rotation matrix that transforms point p from the world

coordinate system to the scanner coordinate system of viewi, A(β) ∈ R
3×4 is a

projection matrix that projects the point onto the 2D imaging panel of viewi,
and H : R3 → R

2 is the homogeneous division that maps the homogeneous coor-
dinates of p′

i to its Cartesian coordinates. Due to page limitations, the detailed
formulation of ϕ(·) is given in the supplementary material.
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Cross-View Feature Fusion and Intensity Regression. Given K projection
views, K view-specific features of the point p are queried from different views to
form a feature list F (p) = {f1, f2, . . . , fK} ⊂ R

C . Then, the cross-view feature
fusion δ(·) is introduced to gather features from F (p) and generate a 1D vector
f̄ = δ(F (p)) ∈ R

C to represent the semantic features of p. In general, F (p) is an
unordered feature set, which means that δ(·) should be a set function and can be
implemented with a pooling layer (e.g., max/avg pooling). In our experiments,
the projection angles of the training and test samples are the same, uniformly
sampled from 0◦ to 180◦ (half rotation). Therefore, F (p) can be regarded as an
ordered list (K×C tensor), and δ(·) can be implemented by a 2-layer MLP (K →
�K

2 	 → 1) for feature aggregation. We will compare different implementations of
δ(·) in the ablation study. Finally, a 4-layer MLP (C → 2C → �C

2 	 → �C
8 	 → 1)

is applied to f̄ for the regression of intensity value v ∈ R.

2.3 Network Training

Assume that the shape and spacing of the original CT volume are H × W × D
and (sh, sw, sd) mm, respectively. During training, different from previous voxel-
based methods that regard the entire 3D CT image as the supervision target,
we randomly sample a set of N points {p1, p2, . . . , pN} with coordinates ranging
from (0, 0, 0) to (shH, swW, sdD) in the world coordinate system (unit: mm) as
the input. Then DIF-Net will estimate their intensity values V = {v1, v2, . . . , vN}
from given projections I. For supervision, ground-truth intensity values V̂ =
{v̂1, v̂2, . . . , v̂N} can be obtained from the ground-truth CT image based on the
coordinates of points by trilinear interpolation. We choose mean-square-error
(MSE) as the objective function, and the training loss can be formulated as

L(V, V̂) =
1
N

N∑

i=1

(vi − v̂i)2. (3)

Because background points (62%, e.g., air) occupy more space than foreground
points (38%, e.g., bones, organs), uniform sampling will bring imbalanced pre-
diction of intensities. We set an intensity threshold 10−5 to identify foreground
and background areas by binary classification and sample N

2 points from each
area for training.

2.4 Volume Reconstruction

During inference, a regular and dense point set to cover all CT voxels is sampled,
i.e., to uniformly sample H × W × D points from (0, 0, 0) to (shH, swW, sdD).
Then the network will take 2D projections and points as the input and generate
intensity values of sampled points to form the target CT volume. Unlike previous
voxel-based methods that are limited to generating fixed-resolution CT volumes,
our method enables scalable output resolutions by introducing the representation
of continuous intensity field. For example, we can uniformly sample �H

s 	×�W
s 	×
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�D
s 	 points to generate a coarse CT image but with a faster reconstruction speed,

or sample �sH	 × �sW 	 × �sD	 points to generate a CT image with higher
resolution, where s > 1 is the scaling ratio.

3 Experiments

We conduct extensive experiments on a collected knee CBCT dataset to show
the effectiveness of our proposed method on sparse-view CBCT reconstruction.
Compared to previous works, our DIF-Net can reconstruct a CT volume with
high image quality and high spatial resolution from extremely sparse (≤ 10)
projections at an ultrafast speed.

3.1 Experimental Settings

Dataset and Preprocessing. We collect a knee CBCT dataset consisting of
614 CT scans. Of these, 464 are used for training, 50 for validation, and 100 for
testing. We resample, interpolate, and crop (or pad) CT scans to have isotropic
voxel spacing of (0.8, 0.8, 0.8) mm and shape of 256 × 256 × 256. 2D projections
are generated by digitally reconstructed radiographs (DRRs) at a resolution of
256 × 256. Projection angles are uniformly selected in the range of 180◦.

Implementation. We implement DIF-Net using PyTorch with a single NVIDIA
RTX 3090 GPU. The network parameters are optimized using stochastic gradient
descent (SGD) with a momentum of 0.98 and an initial learning rate of 0.01.
The learning rate is decreased by a factor of 0.0011/400 ≈ 0.9829 per epoch, and
we train the model for 400 epochs with a batch size of 4. For each CT scan,
N = 10, 000 points are sampled as the input during one training iteration. For
the full model, we employ U-Net [18] with C = 128 output feature channels as
the 2D encoder, and cross-view feature fusion is implemented with MLP.

Baseline Methods. We compare four publicly available methods as our base-
lines, including traditional methods FDK [6] and SART [1], NeRF-based method
NAF [29], and data-driven denoising method FBPConvNet [11]. Due to the
increase in dimensionality (2D to 3D), denoising methods should be equipped
with 3D conv/deconvs for a dense prediction when extended to CBCT recon-
struction, which leads to extremely high computational costs and low resolution
(≤ 643). For a fair comparison, we use FDK to obtain an initial result and apply
the 2D network for slice-wise denoising.

Evaluation Metrics. We follow previous works [27–29] to evaluate the recon-
structed CT volumes with two quantitative metrics, namely peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [24]. Higher PSNR/SSIM values
represent superior reconstruction quality.

3.2 Results

Performance. As shown in Table 1, we compare DIF-Net with four previous
methods [1,6,22,29] under the setting of reconstruction with different output
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Table 1. Comparison of DIF-Net with previous methods under measurements of PSNR
(dB) and SSIM. We evaluate reconstructions with different output resolutions (Res.)
and from different numbers of projection views (K).

Method Res. = 1283 Res. = 2563

K = 6 K = 8 K = 10 K = 6 K = 8 K = 10

FDK [6] 14.1/.18 15.7/.22 17.0/.25 14.1/.16 15.7/.20 16.9/.23

SART [1] 25.4/.81 26.6/.85 27.6/.88 24.7/.81 25.8/.84 26.7/.86

NAF [29] 20.8/.54 23.0/.64 25.0/.73 20.1/.58 22.4/.67 24.3/.75

FBPConvNet [11] 26.4/.84 27.0/.87 27.8/.88 25.1/.83 25.9/.83 26.7/.84

DIF-Net (Ours) 28.3/.91 29.6/.92 30.7/.94 27.1/.89 28.3/.90 29.3/.92

Ground-TruthNAFSARTFDK DIF-NetFBPConvNet

Fig. 3. Qualitative comparison of 10-view reconstruction.

resolutions (i.e., 1283, 2563) and from different numbers of projection views (i.e.,
6, 8, and 10). Experiments show that our proposed DIF-Net can reconstruct
CBCT with high image quality even using only 6 projection views, which signif-
icantly outperforms previous works in terms of PSNR and SSIM values. More
importantly, DIF-Net can be directly applied to reconstruct CT images with dif-
ferent output resolutions without the need for model retraining or modification.
As visual results are shown in Fig. 3, FDK [6] produces results with many streak-
ing artifacts due to lack of sufficient projection views; SART [1] and NAF [29]
produce results with good shape contours but lack detailed internal information;
FBPConvNet [11] reconstructs good shapes and moderate details, but there are
still some streaking artifacts remaining; our proposed DIF-Net can reconstruct
high-quality CT with better shape contour, clearer internal information, and
fewer artifacts. More visual comparisons of the number of input views are given
in the supplementary material.
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Table 2. Comparison of different methods in terms of reconstruction quality (PSNR/S-
SIM), reconstruction time, parameters, and training memory cost. Default setting: 10-
view reconstruction with the output resolution of 2563; training with a batch size of 1.
†: evaluated with the output resolution of 1283 due to the memory limitation.

Method PSNR/SSIM Time (s) Parameters (M) Memory Cost (MB)

FDK [6] 16.9/.23 0.3 - -

SART [1] 26.7/.86 106 - 339

NAF [29] 24.3/.75 738 14.3 3,273

FBPConvNet [11] 26.7/.84 1.7 34.6 3,095

DIF-Net (Ours) 29.3/.92 1.6 31.1 7,617

Table 3. Ablation study (10-view) on dif-
ferent cross-view fusion strategies.

Cross-View Fusion PSNR SSIM

Avg pooling 27.6 0.88

Max pooling 28.9 0.92

MLP 29.3 0.92

Table 4. Ablation study (10-view) on dif-
ferent numbers of training points N .

# Points PSNR SSIM

5,000 28.8 0.91

10,000 29.3 0.92

20,000 29.3 0.92

Reconstruction Efficiency. As shown in Table 2, FDK [6] requires the least
time for reconstruction, but has the worst image quality; SART [1] and NAF [29]
require a lot of time for optimization or training; FBPConvNet [11] can recon-
struct 3D volumes faster, but the quality is still limited. Our DIF-Net can recon-
struct high-quality CT within 1.6 s, much faster than most compared methods.
In addition, DIF-Net, which benefits from the intensity field representation, has
fewer training parameters and requires less computational memory, enabling
high-resolution reconstruction.

Ablation Study. Tables 3 and 4 show the ablative analysis of cross-view fusion
strategy and the number of training points N . Experiments demonstrate that
1.) MLP performs best, but max pooling is also effective and would be a general
solution when the view angles are not consistent across training/test data, as
discussed in Sect. 2.2; 2.) fewer points (e.g., 5,000) may destabilize the loss and
gradient during training, leading to performance degradation; 10,000 points are
enough to achieve the best performance, and training with 10,000 points is much
sparser than voxel-based methods that train with the entire CT volume (i.e., 2563

or 1283). We have tried to use a different encoder like pre-trained ResNet18 [8]
with more model parameters than U-Net [18]. However, ResNet18 does not bring
any improvement (PSNR/SSIM: 29.2/0.92), which means that U-Net is powerful
enough for feature extraction in this task.
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4 Conclusion

In this work, we formulate the CT volume as a continuous intensity field and
present a novel DIF-Net for ultrafast CBCT reconstruction from extremely
sparse (≤10) projection views. DIF-Net aims to estimate the intensity value
of an arbitrary point in 3D space from input projections, which means 3D CNNs
are not required for feature decoding, thereby reducing memory requirement
and computational cost. Experiments show that DIF-Net can perform efficient
and high-quality CT reconstruction, significantly outperforming previous state-
of-the-art methods. More importantly, DIF-Net is a general sparse-view recon-
struction framework, which can be trained on a large-scale dataset containing
various body parts with different projection views and imaging parameters to
achieve better generalization ability. This will be left as our future work.
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H.: Imaging of symptomatic total knee arthroplasty with cone beam computed
tomography. Acta Radiol. 59(12), 1500–1507 (2018)

10. Jiang, Y.: MFCT-GAN: multi-information network to reconstruct CT volumes for
security screening. J. Intell. Manuf. Spec. Equipment 3, 17–30 (2022)

http://arxiv.org/abs/2211.17048


22 Y. Lin et al.

11. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural net-
work for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–
4522 (2017)

12. Lahiri, A., Klasky, M., Fessler, J.A., Ravishankar, S.: Sparse-view cone beam
CT reconstruction using data-consistent supervised and adversarial learning from
scarce training data. arXiv preprint arXiv:2201.09318 (2022)

13. Lechuga, L., Weidlich, G.A.: Cone beam CT vs. fan beam CT: a comparison of
image quality and dose delivered between two differing CT imaging modalities.
Cureus 8(9) (2016)

14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun.
ACM 65(1), 99–106 (2021)

15. Nardi, C., et al.: The role of cone beam CT in the study of symptomatic total knee
arthroplasty (TKA): a 20 cases report. Br. J. Radiol. 90(1074), 20160925 (2017)

16. Pan, J., Zhou, T., Han, Y., Jiang, M.: Variable weighted ordered subset image
reconstruction algorithm. Int. J. Biomed. Imaging 2006 (2006)

17. Punn, N.S., Agarwal, S.: Modality specific u-net variants for biomedical image
segmentation: a survey. Artif. Intell. Rev. 55(7), 5845–5889 (2022)

18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

19. Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: Neat: neural adaptive
tomography. ACM Trans. Graph. (TOG) 41(4), 1–13 (2022)

20. Scarfe, W.C., Farman, A.G., Sukovic, P., et al.: Clinical applications of cone-beam
computed tomography in dental practice. J. Can. Dent. Assoc. 72(1), 75 (2006)

21. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with
prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural
Netw. Learn. Syst. (2022)

22. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric com-
puted tomography images from a single projection view via deep learning. Nat.
Biomed. Eng. 3(11), 880–888 (2019)

23. Tang, C., et al.: Projection super-resolution based on convolutional neural net-
work for computed tomography. In: 15th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine, vol. 11072,
pp. 537–541. SPIE (2019)

24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

25. Wu, W., Guo, X., Chen, Y., Wang, S., Chen, J.: Deep embedding-attention-
refinement for sparse-view CT reconstruction. IEEE Trans. Instrum. Meas. 72,
1–11 (2022)

26. Wu, W., Hu, D., Niu, C., Yu, H., Vardhanabhuti, V., Wang, G.: Drone: dual-
domain residual-based optimization network for sparse-view CT reconstruction.
IEEE Trans. Med. Imaging 40(11), 3002–3014 (2021)

27. Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2CT-GAN: reconstruct-
ing CT from biplanar x-rays with generative adversarial networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10619–10628 (2019)

http://arxiv.org/abs/2201.09318
https://doi.org/10.1007/978-3-319-24574-4_28


DIF-Net 23

28. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: self-supervised
learning-based tomography via sinogram synthesis and prediction. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 1960–1970
(2021)

29. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT
reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.)
MICCAI 2022. LNCS, vol. 13436, pp. 442–452. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-16446-0 42

https://doi.org/10.1007/978-3-031-16446-0_42
https://doi.org/10.1007/978-3-031-16446-0_42

	Learning Deep Intensity Field for Extremely Sparse-View CBCT Reconstruction
	1 Introduction
	2 Method
	2.1 Intensity Field
	2.2 DIF-Net: Deep Intensity Field Network
	2.3 Network Training
	2.4 Volume Reconstruction

	3 Experiments
	3.1 Experimental Settings
	3.2 Results

	4 Conclusion
	References




