
GL-Fusion: Global-Local Fusion Network
for Multi-view Echocardiogram Video

Segmentation

Ziyang Zheng1, Jiewen Yang1, Xinpeng Ding1, Xiaowei Xu2(B),
and Xiaomeng Li1(B)

1 The Hong Kong University of Science and Technology, Hong Kong SAR, China
eexmli@ust.hk

2 Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital
(Guangdong Academy of Medical Sciences), Southern Medical University,

Guangzhou, China
xiao.wei.xu@foxmail.com

Abstract. Cardiac structure segmentation from echocardiogram videos
plays a crucial role in diagnosing heart disease. The combination of
multi-view echocardiogram data is essential to enhance the accuracy
and robustness of automated methods. However, due to the visual dis-
parity of the data, deriving cross-view context information remains a
challenging task, and unsophisticated fusion strategies can even lower
performance. In this study, we propose a novel Gobal-Local fusion
(GL-Fusion) network to jointly utilize multi-view information glob-
ally and locally that improve the accuracy of echocardiogram analy-
sis. Specifically, a Multi-view Global-based Fusion Module (MGFM)
is proposed to extract global context information and to explore the
cyclic relationship of different heartbeat cycles in an echocardiogram
video. Additionally, a Multi-view Local-based Fusion Module (MLFM)
is designed to extract correlations of cardiac structures from differ-
ent views. Furthermore, we collect a multi-view echocardiogram video
dataset (MvEVD) to evaluate our method. Our method achieves an
82.29% average dice score, which demonstrates a 7.83% improvement
over the baseline method, and outperforms other existing state-of-the-
art methods. To our knowledge, this is the first exploration of a multi-
view method for echocardiogram video segmentation. Code available at:
https://github.com/xmed-lab/GL-Fusion

Keywords: Multi-view fusion · Echocardiogram videos · Cardiac
structure segmentation

1 Introduction

Accurate segmentation of the cardiac structure from echocardiogram videos is
integral to several analysis tasks [11] and has a significant impact on clinical
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Fig. 1. Examples of multi-view echocardiogram dataset MvEVD, including PLVLA,
LVSA, and A4C from top to bottom row. The colours red, green, blue, and cyan
denote the LV, RV, LA, and RA cardiac structures. Our train set is sparsely annotated
(5 frames per video), while the validation set and test set are fully annotated for each
video frame. (Color figure online)

practice [26]. For example, segmentation of the left ventricle (LV) enables quan-
tifiable functional analysis of the heart, facilitating the detection and diagno-
sis of heart diseases [3,20,21]. Compared with the single view segmentation,
multi-view information is crucial to diagnose heart disease, e.g., the diagnosis
of congenital heart disease requires the analysis of four views: parasternal long-
axis view (PSLAX), parasternal short-axis view (PSSAX), subxiphoid long-axis
view (SXLAX), and suprasternal long-axis view (SSLAX) [22]. Consequently,
to assist clinicians in diagnostic decision-making, there is a high demand for
developing automated multi-view cardiac structure segmentation methods from
echocardiogram videos in clinical practice. Existing echocardiogram segmenta-
tion approaches are primarily designed for single-view images or videos. For
instance, Li et al. [26] proposed a dynamic neural network capable of segmenting
the LV from a long-axis fetal echocardiogram. In comparison, Leclerc et al. [12]
evaluated an encoder-decoder deep convolutional neural network that indepen-
dently segments two and four-chamber images. However, these approaches have
not addressed multi-view segmentation, where multi-view segmentation methods
already exist in other medical domains, such as the CT-MRI [9,17,18], multi-
view cardiac MRI [4,13,15,16], multi-view mammogram [2], and longitudinal
multiple sclerosis [1]. Applying the proposed methods to multi-view echocardio-
gram segmentation presents several limitations: (1) Some methods are built for
specific datasets and cannot adapt to our task. For instance, UMCT [25] desig-
nated supervised training in one view by generating pseudo segmentation labels
from other views, but has limitations in our task due to the significant gaps
between views. In contrast, InfoTrans [13] is designed for transmitting informa-
tion between views instead of fusion them. While VCN [6] employs contrastive
learning to predict volume but may not be suitable for our task since defining pos-
itive and negative pairs is challenging due to the significant gap between views
and labels. (2) Methods such as JOIN [2], ROI-based fine-grained CNN [14],
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MIMTP [1], MV U-Net [4], MV-CNN [23], and Type-I, II, III [9] concatenate
the features or predicted probability maps of different views and then apply a
fully-connected layer. However, these naive fusion strategies have shown limited
performance and may even lead to worse results; see results in Table 1. (3) Exist-
ing multi-view segmentation methods such as TransFusion [15] and rDLA [16]
mainly apply multi-view fusion with only global features. However, using global
features for multi-view fusion may result in tangling the foreground/background
pixels [10] or leads to high levels of background noise in echocardiograms.

To address this limitation, as shown in Fig. 1, we first collect a multi-view
echocardiogram video dataset, including three views: parasternal left ventricle
long axis (PLVLA view), left ventricular short axis (LVSA) view, and apical 4
chamber (A4C) view. Different views of echocardiograms contain annotations
for different chambers, such as, the PLVLA view contains the left ventricle (LV)
and right ventricle (RV), the LVSA view contains the LV and RV, and the
A4C view contains the LV, left atrium (LA), right atrium (RA), and RV. Fur-
thermore, we propose a novel global-local fusion (GL-Fusion) network for multi-
view echocardiogram video segmentation, where GL-Fusion includes a multi-view
local-global fusion module designed to aggregate information from different views
and improve the representation of each view. The GL-Fusion comprises two com-
ponents. First, a multi-view global fusion module (MGFM) interacts with the
global semantics between different views and thus enhances the representation of
each view. Second, since the global semantics may contain a significant amount
of noisy information, a multi-view local fusion module (MLFM) is introduced to
encourage the model to focus on foreground information.

In addition to capturing multi-view information, we propose a novel dense
cycle loss designed to utilize unlabelled video data for improved representation
learning. Our motivation is based on the idea that standard multi-view data is
obtained from the same patient and under the same stable conditions, without
abnormal behaviours such as suffocating or exercising, ensuring consistent car-
diac cycles. Previous work [7] proposed an unsupervised method called cycle loss,
which trains the model with unlabelled frames based on the heartbeat cycle’s
characteristics. Nevertheless, the proposed cycle loss only focuses on a pair in
two different cycles but ignores possibly similar images that may appear simulta-
neously in a systolic or diastolic period, resulting in features from similar frames
being considered distant. To address this issue, our dense cycle loss examines all
possible pairings throughout the heartbeat cycle. In summary, our contributions
are as follows:

– To the best of our knowledge, this is the first study to examine multi-view
echocardiogram video segmentation.

– Our proposed GL-Fusion uses a multi-view local-global fusion module to com-
bine information from different views and improve the representation of each
view.

– We further design a dense cycle loss that utilizes unlabelled data to enforce
feature similarity based on temporal cyclicality.
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Fig. 2. The overview framework of GL-fusion. The Multi-view Global-based
Fusion Module (MGFM) is proposed for global context information extraction and
introduces dense cycle loss to devise the enforcement of the similarity of dense features
between two heartbeat cycles from an echocardiogram video. The proposed Multi-view
Local-based Fusion Module (MLFM) focuses on mining the correlation of local features
of chambers in a different view.

– Extensive experiments demonstrate our method improved performance over
existing methods, achieving an average dice score of 0.81. We plan to make
our code publicly available upon paper acceptance.

2 Methodology

2.1 The Overall Framework

Figure 2 shows the overall pipeline of our proposed Multi-view Echocardiogram
Global-Local Fusion Network (GL-Fusion), which consists of four main compo-
nents: a view-based encoder, a multi-view global-local fusion module, a dense
cycle loss module and a view-based decoder, where view-based indicate that
parameters of the network of each independent view are non-shared. In our
experiment, we use DeeplabV3 [5] as our view-based encoder and decoder.

Formally, we denoted the sample echocardiogram videos as V = {Xi}Vi=1,
where Xi ∈ R

C×H×W×T is the i-th view video and V is the number of views,
and, C, H, W and T indicate the channels, height, width, and length of input
images. Each video consists of T frames, i.e., Xi = {xi

t}Tt=1, where T remain the
same for different view and xi

t ∈ R
C×H×W indicate t-th frame of i-th view video.
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Since only sparse frames are provided segmentation annotation for training in a
video, thus we denote the annotation frame pair as {xi

tn ,yi
tn}Nn=1, where tn is the

index of the annotation and N is the number of labelled frames that N << T .
During the training, We feed the videos V into the view-based encoder

to extract the corresponding feature maps {Fi}Vi=1 of each view, where Fi ∈
R

D×h×w×T , and, D, h and w indicate the channel number, height and width
of feature maps. Then the multi-view global-local fusion module aims to obtain
the multi-view fused features {Fi}Vi=1, which extract global and local seman-
tics information from other views to enhance the representation of each view
(See Sect. 2.2). Following is the view-based decoder that generates the predicted
segmentation result yi from fused features, and maps the results to correspond-
ing segmentation annotation, i.e., ŷi

tn to the segmentation masks yi
tn . For the

annotated frames, we use the segmentation loss to supervise them, formulated
as follows:

Lseg =
V∑

i=1

N∑

tn=1

Lbce(ŷi
tn ,yi

tn), (1)

where Lbce is the Binary Cross Entropy. The sparse annotations are only a few
frames in the whole video; thus can not obtain a robust model. To leverage
a large number of unlabelled frames, we design the dense cycle loss Lcyc to
enforce temporal feature similarity of videos based on cyclicality; See Sect. 2.3.
The overall loss function of our model is as follows:

L = Lseg + αLcyc, (2)

where α is the hyper-parameter to control the weight between two losses. In the
following, we will illustrate the multi-view global-local fusion module and the
dense cycle loss in detail.

2.2 Multi-view Global-Local Fusion Module

In this section, we describe the multi-view global-local fusion module that aggre-
gates the information from different views to enhance their feature representa-
tion. To this end, we first concatenate extracted feature {Fi}Vi=1 from different
views in a view-wise manner to obtain F = {ft}Tt=1, where ft is the t-th feature
vector in F, and ft ∈ R

D×V ×w×h. Then, we describe the multi-view global and
local fusion with Fglobal and Flocal, respectively.

Multi-view Global Fusion. In order to enhance the representation of each
view, we propose the global-based fusion module (MGFM) to interact with the
global semantics between different views. To this end, we introduce a view-wise
non-local block, which extracts the context information across views. Similarly
to the previous research [8,24] that applied attention to fuse the information,
we here introduce the view-wise attention module to aggregate the cross-view
information (see Fig. 2). Then fused feature Fglobal will be sent to both compute
the dense cycle loss and cooperate with the local fused feature for segmentation
prediction.
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Multi-view Local Fusion. Since each view represents different morphological
information of the heart and may contain the same cardiac structure as others,
for example, the view PLVLA and LVSA both contain left ventricle(LA) and
right ventricle(RV). Hence, extracting the local feature that represents the car-
diac structure can contribute to feature fusion more efficiently. In this module,
the extracted feature Flocal will first pass to both the view-based decoder and
a center block, where the decoder and center block has the same components
with different output. The decoder provides the pseudo label {ŷi}Vi=1 of different
cardiac structures. A center block is introduced to acquire the weight {wi}Vi=1

of {ŷi}Vi=1 and compute the local feature masks {Mi}Vi=1 as Eq. 3,

Mi = σ(pooling(σ(ŷi)) × σ(wi)), (3)

where weight w has the greatest volume in the central area of the segmented
regions and attenuation with distance, σ denotes the sigmoid function and
M ∈ R

1×H×W×T . These masks highlight features with a stronger intensity that
are closer to the object center, while discarding background information that
is farther away from the center. This selection is based on the understanding
that morphological information should remain consistent closer to the center. In
the final, similar to the process of MLFM, the view-wise local feature will be
conducted view-wise concatenation operation and multiplied with local feature
mask {Mi}Vi=1. Then sent to the view-wise attention module to acquire the local
fused feature Flocal.

2.3 Dense Cycle Loss

In echocardiogram videos, since only sparse annotation is available for the super-
vised training, involving the unlabelled data for our training and enhancing the
performance is a challenge. The previous research [7] proposes an unsupervised
method named cycle loss, which jointly trains the model with the unlabelled
frames according to the characteristic of the heartbeat cycle. However, the pro-
posed cycle loss considers only one clip in an iteration, which has the possibility
to match frames that are morphologically identical but not in the same state,
such as the search region being end-diastole while the template region is end-
systole.

Thus, we propose the dense cycle loss, which considers all the possible match-
ing across all template and search regions in each view independently. For the
multi-view fused feature Fglobal of each video will be separated to template region
P i and search region Qi with a ratio in 2:3 according to total frame length T .
Then we densely sample all feature intervals {pi1, ..., p

i
n} from P i and {qi1, ..., q

i
m}

from Qi, respectively, both sampling use the same chunk size s and in our exper-
iment, n and m is 2

5 × T
s and 3

5 × T
s . Then we compute the similarity between

candidate interval pik and target intervals qij of Qi.

αi
j =

∑
W({p}ik, {q}ij) × {q}ij , (4)
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Table 1. The comparison with other methods. all results are reported in Dice Score.

Method PLVLA LVSA A4C Average Dice (%)

Single-view DeeplabV3 [5] 70.93 75.14 77.33 74.46
U-Net [19] 73.35 77.57 76.60 75.84
CSS [7] 79.09 79.70 77.71 78.83

Fusion-based Early-fusion 79.78 77.07 77.58 78.14
Mid-fusion 77.89 76.75 72.44 75.69
Late-fusion 71.62 75.31 74.68 73.87
TransFusion [15] 78.79 80.23 59.31 72.78
Ours 83.84 81.76 81.28 82.29

where W(·) is the computation of the similarity matrix. The similarity will
be used as the weight to reconstruct the feature interval p̃ik. Then we back
to template region P i and compute the similarity between p̃ik and all feature
intervals{pi1, ..., p

i
n} in P i. Then we consider the index of pik as one-hot label g of

the most similar interval of p̃ik and compute view-wise cycle loss Lcyc with label
g as shown in the following equation:

Lcyc =
V∑

i=1

∑

j∈P i

1j=glog(αi
j) (5)

3 Experiment

Datasets. We collect a large multi-view echocardiogram video dataset named
MvEVD from one medical institution, with a total of 254 sparsely annotated
videos and 10 fully annotated videos with 800 × 600 resolution across three
cardiac views (PLVLA, LVSA and A4C view). Each video includes 5 annotated
frames. The average length of each video is larger than 100 frames that are able
to cover more than one cardiac cycle.

Implementation Details. We use the model DeeplabV3 [5] as our view-based
encoder and decoder, and select Adam optimizer for the model training with
initial learning rate as 3e−4 and weight decay of 1e−5. When training, we use
all sparsely annotated videos. All annotated frames are selected to supervise
training while randomly selecting 40 consecutive frames from videos for semi-
supervised training. The training batch size of annotated images and unlabeled
videos is 8 and 1, respectively. In the final, we use CosineAnnealing as a scheduler
and set the total training epoch to 100. The framework is built with Pytorch
with 4 NVIDIA RTX3090 GPUs for training. For the data augmentation in the
training stage, we resize each frame in 144 × 144 size and then randomly crop
them to 112 × 112.
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Table 2. Effectiveness of MGFM and
MLFM. This table shows the perfor-
mance of the Global and Local fusion
modules

MGFM MLFM Avg. Dice(%)

Base ✗ ✗ 74.46

Base+MGFM � ✗ 80.20

Base+MLFM ✗ � 78.41

Ours � � 82.29

Table 3. Effectiveness of Cyc. and
Dense Cyc.. This table shows the effec-
tiveness of vanilla cycle loss [7] (Noted
by Cyc.) and our proposed dense cycle
(Noted by Dense Cyc.).

Cyc. Dense Cyc. Avg. Dice(%)

Fusion-only ✗ ✗ 80.36

Fusion+Cyc. � ✗ 79.33

GL-Fusion � � 82.29

OursInput DeeplabV3 Unet CSS Early Fusion Mid Fusion Late FusionGround Truth

Fig. 3. Segmentation results from three views of echocardiogram videos, including
PLVLA, LVSA, and A4C from top to bottom row. The red, green, blue, and cyan
colours refer to LV, RV, LA, and RA cardiac structures, respectively. (Color figure
online)

Validation and Testing. We use all fully annotated videos and split them into
validation and testing with a ratio of 2:8. In this stage, we resize each frame in
144 × 144 size and conduct center cropping to them with the size of 112 × 112.
Selecting the best model based on validation performance and report results in
the testing set with Dice score.

3.1 Comparison with the State-of-the-Art Methods

To evaluate the performance of our method, we do the comparison with two
types of methods: single-view methods and fusion-based methods in Table 1.
To be specific, single-view methods independently train segmentation networks
for each view without using any strategy across views or simply conducting
semi-supervised approaches [7]. Fusion-based methods use feature-fusion mod-
ules to aggregate features and predict the segmentation masks. Our GL-Fusion
method can reach 83.84%, 81.76% and 81.28% performance in Dice score across
three different views, with 10.49%, 4.19% and 4.68% boosts when compared with
the best single-view method [19], and 4.75%, 2.06%, 3.57% enhancement when
compared to the best single-view with semi-supervised method CSS [7]. Also,
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compared with the different global fusion methods, our global and local fusion
methods conduct significant improvements compared with the early-fusion app-
roach. The visualization in Fig. 3 compares the segmentation quality with our
GL-fusion method and others across three different views.

3.2 Ablation Study

In this section, we analyze the contribution to the performance of the proposed
modules Multi-view Global Fusion Module (MGFM) and Multi-view Global
Fusion Module (MGFM) of our framework. All results are illustrated in Table
2. a-b, the baseline without adapting any fusion strategy presents the lowest
average dice, while using only MGFM or MLFM module can boost the result
to 80.20% and 78.41%, respectively. The combination of these two modules can
reach 82.29% dice score with a 2.09% increase in Dice score. In contrast, using the
fusion method and cycle loss will lead to worse performance, while our proposed
dense cycle loss can boost the result from 80.36% to 82.29%.

4 Conclusion

In this paper, we propose a novel fusion framework called GL-Fusion, which
jointly uses global and local information to enhance the segmentation per-
formance of echocardiogram videos. Additionally, to ensure fair evaluation of
the multi-view segmentation results, we introduce a multi-view echocardiogram
video dataset called MvEVD, which provides full annotation for validating
and testing performance. Our results demonstrate that the proposed GL-Fusion
framework significantly outperforms other methods. In the future, we aim to
further improve our method and make it more efficient.
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