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Abstract— Surgical phase recognition is a fundamental
task in computer-assisted surgery systems. Most existing
works are under the supervision of expensive and time-
consuming full annotations, which require the surgeons
to repeat watching videos to find the precise start and
end time for a surgical phase. In this paper, we introduce
timestamp supervision for surgical phase recognition to
train the models with timestamp annotations, where the
surgeons are asked to identify only a single timestamp
within the temporal boundary of a phase. This annotation
can significantly reduce the manual annotation cost com-
pared to the full annotations. To make full use of such
timestamp supervisions, we propose a novel method called
uncertainty-aware temporal diffusion (UATD) to generate
trustworthy pseudo labels for training. Our proposed UATD
is motivated by the property of surgical videos, i.e., the
phases are long events consisting of consecutive frames.
To be specific, UATD diffuses the single labelled timestamp

Manuscript received 30 November 2022; revised 20 January 2023;
accepted 30 January 2023. Date of publication 13 February 2023; date
of current version 1 June 2023. This work was supported in part by
the Shenzhen Municipal Central Government Guides Local Science
and Technology Development Special Funded Projects under Grant
2021Szvup139; in part by the Hong Kong University of Science and
Technology (HKUST)-Beijing Institute of Collaborative Innovation (BICI)
Exploratory Fund under Grant HCIC-004; and in part by the Research
Grants Council of the Hong Kong Special Administrative Region, China,
under Project T45-401/22-N. (Xinpeng Ding and Xinjian Yan contributed
equally to this work.) (Corresponding authors: Jian Zhuang; Xiaowei Xu;
Xiaomeng Li.)

Xinpeng Ding and Zixun Wang are with the Department of Electronic
and Computer Engineering, Hong Kong University of Science and
Technology, Hong Kong, SAR, China (e-mail: xdingaf@connect.ust.hk;
craddywang@gmail.com).

Xinjian Yan is with the Department of Cardiovascular Surgery,
Guangdong Cardiovascular Institute, Guangdong Provincial People’s
Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,
and also with the Department of Cardiovascular Surgery, Guang-
dong Provincial People’s Hospital (Guangdong Academy of Medical
Sciences), Southern Medical University, Guangzhou, China (e-mail:
yanxinjian@gdph.org.cn).

Wei Zhao is with the School of Physics, Beihang University,
Beijing 100191, China, and also with the Beihang Hangzhou Inno-
vation Institute Yuhang, Yuhang, Hangzhou 242332, China (e-mail:
zhaow20@buaa.edu.cn).

Jian Zhuang and Xiaowei Xu are with the Department of Cardiovascular
Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Southern Medical University, Guangzhou 510080,
China, and also with the Department of Cardiovascular Surgery, Guang-
dong Cardiovascular Institute, Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou 510080, China
(e-mail: zhuangjian@gdph.org.cn; xiao.wei.xu@foxmail.com).

Xiaomeng Li is with the Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and Technology, Hong Kong,
SAR, China, and also with Shenzhen Research Institute, Hong Kong
University of Science and Technology, Shenzhen 518057, China (e-mail:
eexmli@ust.hk).

Digital Object Identifier 10.1109/TMI.2023.3242980

to its corresponding high confident ( i.e., low uncertainty)
neighbour frames in an iterative way. Our study uncovers
unique insights of surgical phase recognition with times-
tamp supervision: 1) timestamp annotation can reduce 74 %
annotation time compared with the full annotation, and sur-
geons tend to annotate those timestamps near the middle
of phases; 2) extensive experiments demonstrate that our
method can achieve competitive results compared with full
supervision methods, while reducing manual annotation
costs; 3) less is more in surgical phase recognition, i.e.,
less but discriminative pseudo labels outperform full but
containing ambiguous frames; 4) the proposed UATD can be
used as a plug-and-play method to clean ambiguous labels
near boundaries between phases, and improve the perfor-
mance of the current surgical phase recognition methods.
Code and annotations obtained from surgeons are available
at https://github.com/xmed-lab/TimeStamp-Surgical.

Index Terms—Surgical phase recognition, timestamp
supervision, uncertainty estimation.

[. INTRODUCTION

OMPUTER-ASSISTED surgery systems can improve
Cthe surgery’s quality and ensure the patients’ safety in
modern operating rooms [1], [2]. Surgical phase recognition
is one key component of computer-assisted surgery systems,
which aims to predict which phase is occurring at the current
frame [3], [4]. It can be used for automatic indexing of
surgical video databases [5], monitoring surgical process [6],
scheduling surgeons [7] and assessing surgeons’ skills [8].
In recent years, automated surgical phase recognition has fea-
tured deep learning [9], [10], [11] and has reached promising
recognition performance [5], [12], [13]. Most current surgical
phase recognition approaches require full annotations from
surgeons, i.e., the surgeons need to find the precise start
and end time for a surgical phase. To this end, the surgeon
should repeat watching the video at a very slow speed to
find a specific time for the start of the phase. Then, the
surgeon needs to continue to watch the video and find the
precise end time of the phase. As shown in Fig. 1 (a),
this full annotation is very time-consuming, e.g., surgeons
need to spend an average of 562.83 seconds to annotate a
video. Furthermore, the boundaries between different phases
are usually ambiguous [12]. Due to the subjective of different
surgeons, they would provide inconsistent annotations for the
same video [14].

To address the limitation of the full annotation, this paper
introduces the timestamp supervision to surgical phase recog-
nition which trains the model from the timestamp annotation as
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Fig. 1. (a) Comparison of the full annotation and our proposed timestamp
annotation. When labelling a phase in full annotation, the annotator
needs to roll back and find the precise start and end time. In our times-
tamp annotation, only a single timestamp is labelled without identifying
the start and end time, which can save annotation cost and is much
faster than the full annotation. We invite two surgeons to conduct full
and timestamp annotations, and record their annotation times. We finally
observe that they took an average of 562.83 and 148.53 seconds
per video for full annotation and timestamp annotation, respectively.
(b) The trade-off between manual annotation cost and accuracy for dif-
ferent methods. Compared with existing methods, our method achieves
the competitive performance while using only 26% manual annotation
cost compared with the full supervision.

shown in Fig. 1 (a). In timestamp annotation, the surgeons only
annotate the phase class and a single timestamp for each phase,
instead of start and end times. Once identifying the phase,
the surgeon records the current timestamp (e.g., 00:05:20.00),
no need to roll back and repeat watching the video to find
a precise start time. After recording this single timestamp,
since there is no need to find the end time, the surgeon would
continue to go through the video quickly to find another phase.
Hence, the timestamp annotation significantly reduces manual
annotation cost compared to the full annotations; see the
detailed annotation analysis in Section IV-B. Given timestamp
supervision, i.e., only a single label for each phase, the total
number of positive frames is quite small, and the naive way
that training with annotated labels may be difficult to learn a
robust model; see results in Table. II. To generate more pseudo
labels, some researchers propose to detect the action changes
between two consecutive labeled frames for action recognition
in natural videos with timestamp supervision [14]. However,
this method displays limited performance to surgical videos
because surgical videos contain more ambiguous boundaries,

leading to the noisy and inconsistent pseudo labels; see
Sec. IV-E for detailed discussion.

To address the above problems, we leverage the property
of surgical videos to generate more trustworthy pseudo labels
from timestamp supervision. The property we observed is that
phases in the surgical video are long events consisting of
continuous frames, which shows a desirable temporal property
that the closer the frames to the annotated timestamp, the
more likely they are to be classified to the same label as the
annotated one. Frames far from the annotated timestamp are
difficult to have correct pseudo labels. Based on the above
property, a Uncertainty-Aware Temporal Diffusion (UATD)
module is proposed to diffuse the annotated timestamps to
their adjacent low-uncertainty frames in the temporal axis.
In this way, only frames with high confidence and near
the annotated timestamps would be considered for adding
into pseudo-labels for training. Furthermore, the duration of
the surgical videos generally last tens of minutes or even
hours, making it hard to train the model in an end-to-end
manner. Current works [3], [4], [15] generally sample a few
consequent frames from the long videos, and optimize the
combined spatial-temporal model in an end-to-end manner.
This can be implemented in the full annotations, since all
sampled consequent frames have labels. However, in times-
tamp annotation, most of the sampled frames have no labels,
resulting in the imbalance of positive and negative samples.
This imbalance training would degrade the performance; see
details in Table III. To this end, we propose Loop Training
(LP), which optimizes the spatial and temporal model in an
independent and iterative way.

We conduct empirical studies based on the proposed UATD
and LP, and discover important insights of surgical phase
recognition from timestamp supervision as follow: 1) Times-
tamp annotation can reduce 74% annotation time compared
with the full annotation, and surgeons tend to annotate those
timestamps that are near the middle of phases; see details
in Fig. 3. 2) Extensive experiments demonstrate that our
method can achieve competitive results compared with full
supervision methods, while reducing manual annotation cost;
see details in Table I. 3) Less is more in surgical phase recog-
nition, i.e., less but discriminative pseudo labels outperform
full but containing ambiguous frames; see details in -Table. I.
4) The proposed UATD can be used as a plug-and-play
method to clean ambiguous labels near boundaries between
phases, and improve the performance of the current sur-
gical phase recognition methods; see details in Fig 12.
The reason is that training with our method would help
to decrease intra-class distance and increase inter-class dis-
tance simultaneously; see details in Table. IX. The main
contributions of this work can be summarized as the
following:

o We study surgical phase recognition with a new time-
stamp supervision, which is the most efficient annotation
setting in current surgical works. We invite two surgeons
with rich clinical experience to annotate timestamp anno-
tations and record their annotation time, and find that
the timestamp annotation can reduce 74% annotation cost
compared with the full annotation.
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« We introduce UATD to generate the trustworthy pseudo
labels from the timestamp annotation, and LP to train the
model from the generated pseudo labels in an iterative
way.

« We conduct in-depth empirical studies of the proposed
UATD and LP based on timestamp supervision, and
discover four deep insights which may boost the future
development of surgical phase recognition.

[l. RELATED WORK

A. Surgical Phase Recognition

We broadly classified related methods for surgical phase
recognition into two categories including fully-supervised
learning and label-efficient learning.

1) Fully-Supervised Learning: In fully-supervised learning,
each frame in a surgical video is labeled. Early works
[16], [17], [18] use hand-crafted features such as color and
texture to perform recognition, which achieves limited per-
formance and poor generalization. With the development of
neural networks, recent deep learning-based methods achieve
the great success [3], [4], [5], [12], [13], [15], [19], [20], [21],
[22], [23]. ZIBNET [24] a state-preserving Long Short Term
Memory (LSTM) to utilize the long-term evolution of tool
usage within complete surgical phases. EndoNet [5] first uses
a convolutional neural network to automatically learn features
and prove its effectiveness for surgical phase recognition.
SV-RCNet [3] integrates convolutional neural networks (CNN)
and long short-term memory (LSTM) to learn both spatial and
temporal representations in an end-to-end way. To capture the
long-range temporal relationship, TMRNet [4] introduces a
memory bank and TeCNO [25] uses dilated temporal con-
volutional network to get a large receptive field. Recently,
Yi and Jiang [20] realize the negative effect of hard frames
and propose data cleansing and online hard frames mapper to
detect and handle them respectively. Yi and Jiang [21] find
that simply applying multi-stage architecture e.g. multi-stage
TCN makes the refinement fall short and thus design not end-
to-end training manner to alleviate this problem. OperA [26]
leverages attention weight to yield further insights into the
decision-making process. Trans-SVNet [13] proposes a hybrid
embedding aggregation Transformer to fuse spatial and tem-
poral embedding. Ding and Li [12] emphasize the importance
of segment-level semantics and extract semantic-consistent
segments to refine the erroneous predictions. Notably, some
related methods [5], [15], [25] utilize additional tool presence
labels to perform a multi-task learning to facilitate surgical
phase recognition.

2) Semi-Supervised Learning: Despite the great success the
above methods get, they require a large amount of annotated
videos, which is very costly [27], [28]. some researchers
[29], [30], [31], [32], [33] explore the methods for semi-
supervision, where only parts of videos in the dataset are fully
annotated, and others are unlabelled. For example, LRTD [32]
use active learning to this context. It captures the long-range
temporal dependency among continuous frames in the unla-
beled data pool and selects the clips with weak dependencies

to annotate. Yengera et al. [30] introduce self-supervised pre-
training ensuring all available laparoscopic videos can be
utilized. Yu et al. [29] propose a teacher/student approach
where the teacher is trained on a small set of labeled videos
and generates pseudo labels on the rest of unlabeled videos
for student model learning. Furthermore, SurgSSL [33] uses
consistency regularization and pseudo-labeling to leverage the
knowledge in unlabeled data, which progressively leverages
the inherent knowledge held in the unlabeled data to a larger
extent.

3) Comparison of the Manual Annotation Cost for Different
Supervision Setting: Here, we compare our proposed times-
tamp annotation compared with the above methods including
full supervision methods and semi-supervision methods. In full
supervised methods [12], [25], annotators are required to
repeat watching the video and roll back to find the precise
start and end time for each phase, which is very time-
consuming. As shown in Fig. 1 (a), the average annotation
time of each video for full supervision is 562.83s. In semi-
supervision [29], [30], [31], [32], [33], the authors are required
to only label full annotations for a few parts of all videos.
Generally, in semi-supervised surgical phase recognition meth-
ods, 50% of videos are required to be annotated for achieving
competitive results compared with full supervision methods,
as shown in Fig. 1 (b). However, the annotation times of the
introduced timestamp supervision is only 148.53s for each
video, i.e., 26% annotation time of the full supervision, and
achieve the competitive results. For clarity, using the same
network TCN [14], our methods achieve 91.9% accuracy in
Cholec80 with only 26% annotation time, while the full super-
vision achieves 91.1% accuracy using 100% annotation time.
Meanwhile, the SOTA semi-supervised method SurgSSL [33]
achieves 87.0% accuracy using 30% annotation times. Hence,
our proposed method is the best trade-off between accuracy
and manual annotation cost.

B. Weak Supervision for Video Understanding

Weakly supervision has received widespread attention in
some video understanding tasks, such as temporal action
localization [34], [35], [36], [37], [38], [39], [40] and action
segmentation [41], [42], [43]. Some of them use video-level
supervision, i.e., a set of action categories, while some use
transcript-level supervision, i.e., an ordered list of actions. For
example, Richard et al. [44] leverage text-based grammar from
unordered action sets. Although they significantly reduce the
annotation effort, the performance is quite limited. To trade off
the annotation-efficient and performance, timestamp supervi-
sion [14], [45], [46], [47] is proposed for action recognition.
For example, SF-Net [47] designs an action frame mining
and a background frame mining strategy to introduce more
negative frames into the training process. However, the above
methods aiming at temporal action localization task generate
very limited pseudo labels, is not suitable for surgical phase
recognition, i.e., frame-wise recognition. In the action segmen-
tation task, to generate frame-wise pseudo labels, Li et al. [14]
detect the action change between two consecutive timestamps
by stamp-to-stamp energy function and generate full pseudo
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Overview of our proposed framework. (a) The feedforward process of mapping a video to the phase predictions. A video is first fed into a

spatial feature extractor (normally a CNN) to obtain the video feature, followed by a temporal feature extractor to obtain the frame-wise prediction.
(b) Uncertainty-aware temporal diffusion (UATD). To generate trustworthy pseudo labels based on the timestamp supervision, videos or video
features are fed into the uncertainty estimation to obtain the uncertainty scores for each frame. Based on the uncertainty scores, we diffuse the
timestamp annotation to the new pseudo labels. (c) Loop training. Due to the computation and memory cost, the loop training is introduced to
optimize the spatial feature extractor and temporal feature extractor by generated pseudo labels in an iterative way.

labels. However, in surgical videos, the frames near boundaries
are generally ambiguous, and the generated pseudo labels
may be noisy annotations, which degrades the performance.
Compared with previous approaches, our proposed method
generates as many confident pseudo labels as possible by
considering the temporal relationships among frames, while
discarding pseudo labels with large uncertainty.

C. Uncertainty Estimation

In deep learning, neural networks may generate false pre-
dictions with a high probability, which is called epistemic
uncertainty resulting from the model itself [48]. To esti-
mate the uncertainty of the deep networks, Monte Carlo
Dropout [49] is proposed to approximate the posterior dis-
tribution for uncertainty estimation. Ensembles [50] trains
multiple networks independently on the entire dataset using
random, and the predictions of multiple networks are averaged
over an ensemble. Follow-up researchers majorly focus on
improving the quality of the predicted uncertainty scores by
inference-based methods [51], [52], [53] or auto-encoder based
methods [54], [55]. Estimation of uncertainty has also been
investigated for medical image classification and segmentation.
Laves et al. [56] leverages Monte Carlo dropout at test time,
and shows that error prediction is correlated with higher
uncertainty in OCT classification. Leibig et al. [57] uses Monte
Carlo dropout to conduct uncertainty estimation and shows
that uncertainty-informed decisions can improve diagnostic
performance. Wang et al. [58] utilize Monte Carlo dropout
and test data augmentation to reduce overconfident error
predictions in 3D brain tumor and 2D brain segmentation.
Different from current methods [57], [58] that directly use
Monte Carlo Dropout to estimate each sample individually,

in our proposed UATD, the uncertainty of each frame is
estimated based on the relation of itself, its nearby timestamp
annotations and its adjacent frames in the temporal axis, which
is motivated by the property of the surgical phase.

Ill. METHOD
A. Problem Definition

Let X = {x,}tT=1 be a surgical video with T frames, where
X; is the 7-th frame. Each surgical video is divided into several
phases, and there is no overlapping among phases. Our goal is
to learn a spatial feature extractor network f(-) and a temporal
feature extractor g(-) that maps the frame x; to a phase label,
which is presented in Fig. 2 (a). In the full supervision, the
frame-wise labels Y = {y1,...,yr} are available. However,
in our timestamp supervision, given a video consisting of N
phases, where N <« T, only a single timestamp in each phase
are annotated as Y;; = {ys, ..., ¥y ), where #; is in the i-th
phase, y; € {1,2,...,C}, and C is the total number of classes.
To perform surgical phase recognition with timestamp
supervision, we propose an uncertainty-aware temporal dif-
fusion (UATD) to generate trustworthy pseudo labels, denoted
as Y, from the timestamp supervision Y, to optimize f(-) and
g(+). The proposed UATD is shown in Fig. 2 (b); see Sec. III-B
for details. Furthermore, we introduce the loop training, which
optimizes f(-) and g(-) in an iterative way to reduce the
memory cost and imbalance optimization; see Fig. 2 (c) and
Section III-C for details.

B. Uncertainty-Aware Temporal Diffusion

In timestamp supervision Y, i.e., only a single label for
each phase, the total number of positive frames is quite small
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and may be difficult to learn a robust model. Although we
do not have full annotations, it is clear that the phases are
long events consisting of consecutive frames. Motivated by this
property of surgical videos, we propose the uncertainty-aware
temporal diffusion (UATD) to diffuse the single labelled frame
to its corresponding high confident (i.e., low uncertainty)
neighbour frames. In this way, we can introduce more frames
acting as pseudo labels into the training process. Furthermore,
the diffusion of frames is stopped by low-confident frames,
which can avoid ambiguous annotations. The proposed UATD
consists of two components: uncertainty estimation and tempo-
ral diffusion. In the following, we describe the two components
respectively.

1) Uncertainty Estimation: In UATD, we first need to esti-
mate the uncertainty of each frame to find the high-confident
ones for the single annotated frame. To this end, we introduce
Monte Carlo Dropout [49], a simple yet efficient way, to eval-
uate the uncertainty of each frame. In Monte Carlo Dropout,
given an input denoted as z and a network denoted as o(-),
we feed z into o(-) with different dropout K times and obtain
a set of class probabilities. This process can be formulated as:

P={p‘ =o0@}K |, )

where pk € R€nd P € RX*C, C is the total number classes.
Then, we average these K vectors of probability, which can be
formulated as u(P) € RE, where ju(-) is the mean function.
After that, we obtain the class label for the input by:

¢ = argmax u(P). )

Finally, we use the standard deviation to measure the uncer-
tainty of the obtained the class label, i.e., ¢, which can be
formulated as:

u=o (P, 3

where u is the uncertainty score for o(-) with the input of z.
The higher u indicates that the model o(-) predicts z to class ¢
with lower confidence, and vice versa. In this paper, we need
to evaluate the uncertainty of both the spatial and temporal
feature extractors, which are defined in Section III-A.

To conduct the uncertainty estimation for the spatial feature
extractor f(-), we add an extra classification head h(-) to
f () as shown in Fig. 2 (c), denoted as h(f(-)) to obtain the
classification prediction for each frame x;. Let o(-) = h(f(-))
and z = x;, and then we can obtain the uncertainty score
pu; for each frame x; by using Eq. 1 to Eq. 3. Similarly,
to conduct the uncertainty estimation for the spatial feature
extractor g(-), we can easily set o(-) = g(-) and z = f;,
obtaining the uncertainty score for each frame feature f;.

2) Temporal Diffusion: After obtaining the uncertainty score
W, we use the temporal diffusion module to diffuse the current
labels to more pseudo labels for training in the next iteration;
see the iterative training details in Sec. III-C. To be specific,
we treat the labeled frames as anchors and start diffusion
from anchors to the adjacent frames on either side of them in
the temporal dimension, which is illustrated in Algorithm 1.
By the temporal diffusion, one frame would be introduced into
the next iteration training only if the uncertainty score of it is

Algorithm 1 Temporal Diffusion

Input: Uncertainty scores {u,}szl,

timestamp annotation Y5 = {y;,, . ..
old 7. .
Output: Pseudo labels Y = {y,}le for the next iteration.

prediction Y = {§:}7_,,

, ¥y }, uncertainty thresh-

1: > Diffusion for each phase
2:fori=1to N do
3:  © Diffusion for the left side
fort=t_1tot; do

Y = Vo - L(u; <) - 1§ = Vi)
end for
> Diffusion for the right side
for t =¢; to tiy1 do

Yo =% 1w <7)- 1§ = Vi)
10:  end for
11: end for

R e AN

Algorithm 2 Loop Training

Input: Video X, timestamp annotation Yy, initial spatial fea-
ture extractor f(-), initial spatial classifier /(-), initial temporal
feature extractor g(-), uncertainty threshold t, forward times
K, times of temporal diffusion n, times of loop training m.
Output: Well optimized spatial feature extractor f(-) and
temporal feature extractor g(-).
1: ? <~ Yy
2:fori=1tondo

3: > Optimizing the spatial feature extractor

4 (), h() < OptimS(f (), h(), X, Y, Lee)

5 > Use UATD to generate the new pseudo labels
6: Y < UATD(h(f (), X, Yy5, T, K).
7

8

9

> Set the initial pseudo labels

: end for
:for j =1tomdo
F < f(X)

10: fori=1tondo
11: > Optimizing the spatial feature extractor
12: g() < OptlmT(g(), F. Y, Lee, Lsmootn)
13: > Use UATD to generate the new pseudo labels
14: Y <« UATD(g(-), F, Y, 7, K)

15:  end for
16: > Optimizing the spatial feature extractor
18: end for

lower than a threshold 7 and the predicted class label equals
to its nearby timestamp frame. In this way, the generated
pseudo label would be high confidence, avoiding introducing
noisy annotations. Note that in the obtained pseudo labels
Y = {¥,}_,. y: = 0 means the ¢-th frame is not labelled.

For clarity, we formulate the overall process of UATD as
Y <« UATD(o(-), Z, SA(, 7, K), where Z is the input ( e.g., X
or F), o(-) is the network (e.g., h(f(-)) or g(-)).

C. Loop Training

The duration of the surgical videos generally lasts tens of
minutes or even hours, making it hard to train the model in
the end-to-end manner. In previous full supervised methods
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[3], [4], [15], a few consequent frames are sampled from the
long videos for training the spatial and temporal networks
in the end-to-end manner. However, in timestamp annotation,
most of the sampled frames have no labels, resulting in
the imbalance of positive and negative samples. This imbal-
ance training would degrade the performance; see details in
Table III. To address this problem, we decouple the optimiza-
tion of spatial and temporal feature extractors via loop training,
as shown in Fig. 2 (c). In the loop training, we only sample
labelled frames (annotated timestamps or generated pseudo
labels) to optimize the spatial feature extractor or temporal
feature extractor, which can not be achieved in previous joint
training. Formally, there are four main steps in our loop
training:

(a) Optimizing the spatial feature extractor: f(-), h(-) <«
OptimS(f(-), h(), X, Y, L..). To be specific, the input video
X is fed into the spatial feature extractor f to obtain the video
feature F = f(X). Then a classifier A(-) is used to obtain the
prediction Y = h(F), where Y = {f,}thl. Given the target
labels (timestamp annotation or pseudo labels) Y = {¥,}7 , the
objective for the spatial feature extractor can be formulated
as:

T
1 _ .
Ece = _? Z y: log(YI)s (4)
1=1.y,#0

where y, # 0 indicates the ¢-th frame is not labelled.

(b) Extracting the spatial features: F = f(X); see details in
step (a).

(¢) Optimizing the temporal feature extractor: g(-) <«
OptimT(g(-), F, Y, Lee, Lsmoorn)- Specifically, the video fea-
ture F is fed into g(-) to capture the temporal relation of
frames and obtain the corresponding predictions Y. We use the
CrossEntropy loss to train the g(-), similar to f(-). Compared
with the spatial feature extractor, to encourage a smooth
transition between frames, we use the truncated mean squared
error as a Smoothing Loss following [14], [59]:

1 ~

Esmooth = 4 At,ca (5)
TC >
- A2, A
A= [ her The =¥ ©)
v, otherwise,
Ar e =|log(y;.) —log(y;-1.0)l, (7N

where T is the video length and C is the number of action
classes. This loss function explicitly penalizes the difference
between every two adjacent frames and we suggest readers
refer to [59] for more details. The final loss function is the
weighted sum of these two losses:

L= ACce + )‘«‘Csmooth» (8)

where A is a hyper-parameter to balance the contribution of
each loss and is set to 0.015 for all of our experiments.

(d) Generating the pseudo labels based on UATD: Y <«
UATD(0(-), Z, Y;s, T, K); see details in Section III-B.
After the definition of the four steps, we illustrate the loop
training in Algorithm 2.

IV. EXPERIMENTS
A. Datasets and Metrics

1) M2CAI16: The M2CAI16 dataset [61] consists of
41 laparoscopic videos that are acquired at 25fps of chole-
cystectomy procedures, and each frame has a resolution of
1920 x 1080. Following [21], 27 videos are used for training
while the rest 14 are used for testing. These videos are
segmented into 8 phases by experienced surgeons.

2) Cholec80: The cholec80 dataset [5] contains 80 videos of
cholecystectomy surgeries performed by 13 surgeons. All the
videos are recorded at 25 fps, and the frames in them have a
resolution of 1920 x 1080 or 854 x 480. The dataset is divided
into two subsets of equal size, with the first 40 videos as a
training set and the other 40 as a testing set.

3) Evaluation Metrics: Following previous works [3], [4],
[5], [20] we utilize four metrics, i.e., accuracy (AC), precision
(PR), recall (RE), and Jaccard (JA), to evaluate the phase
prediction accuracy. Among them, accuracy and Jaccard index
are used to evaluate the submission of M2CAI Workflow
Challenge, while precision and recall are also commonly used
metrics for video-based phase recognition.

B. Annotation Analysis

To obtain the timestamp annotations, we invite two sur-
geons to label a single timestamp for each phase on two
datasets. Specifically, they are asked to label one timestamp for
each phase while watching the video, as shown in Fig. 1 (a).
To compare the annotation cost of different types of annota-
tions, we also ask them to find the precise start and end time
for each phase, i.e., full annotation. In Fig. 3 (a), we report the
average time they spend on each video when using timestamp
and full annotations. “Surgeonl” and “Surgeon2” indicates the
first surgeon and the second surgeon respectively. To obtain
annotation times for full or timestamp annotations, we first
let the surgeon prepare a timer. When conducting full or
timestamp annotations, the surgeon first turned on the timer,
then immediately watched the video and annotated it. After
completing the annotation of a video, the surgeon stopped the
timer immediately, and record the time it takes to annotate
the video. When all videos are annotated and their annotation
time are recorded, we calculate the average annotation time
for all videos. It is clear that our introduced timestamp
annotation can largely reduce the annotation time compared
with the full annotation, e.g., Surgeon2 can reduce 78% time
in Cholec80 dataset. On average, our proposed timestamp
annotation only requires 26% annotation time compared with
the full annotation.

Furthermore, we also show the distribution of the relative
position of timestamp annotation to the corresponding phase
on two datasets. As shown in Fig. 3 (b), the labeled timestamps
would appear in an arbitrary position of the phase. Surgeons
prefer to label timestamps near the middle of phases, which
reveals that surgeons can identify a phase without watching
the whole phase. That is to say, the surgeons can skip the left
part of the phase after the timestamp annotation. Of course,
there is no need for the surgeons to repeat watching videos
to find the precise temporal window for each phase. Hence,
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(a) Comparison of the annotation time of timestamp and full annotations. We show the annotation times (seconds/video) of two different

surgeons for Cholec80 and M2CAI16 datasets, respectively. (b) Statistics of positions of manually annotated timestamps on two datasets. The
horizontal axis indicates the relative temporal portion of the whole phase. For example, (0.1, 0.2] indicates the annotated timestamp is inside the
temporal period from 0.1 to 0.2 of the phase. The vertical axis represents the percentage of annotated timestamps. It shows that the timestamps
would appear in the arbitrary position of the phase, and surgeons prefer to label timestamps near the middle of phases. (c) Statistics of annotation
time of manually annotated timestamps on two datasets. The horizontal axis indicates the video index, and the vertical axis represents annotation
time. It shows that our timestamp annotation consistently takes less time than full annotation for labeling each video.

TABLE |
COMPARISON WITH THE STATE-OF-THE-ART ON CHOLEC80 AND M2CAI16 DATASETS. “*” INDICATES THE OFFLINE PREDICTION

Method Cholec80 M2CAIl16

AC (%) PR (%) RE (%) JA (%) \ AC (%) PR (%) RE (%) JA (%)

Fully Supervised Methods - 100% annotation time
PhaseNet [60] 788 +4.7 T1.3+15.6 76.6+16.6 - | 79.5+12.1 - - 64.14+10.3
EndoNet [5] 81.7+4.2 - 79.6 £ 7.9 - - - - -
SV-RCNet [3] 8.3+73 80770 835+75 - 81.7+8.1 81.0 £8.3 81.6 £7.2 65.4 + 8.9
OHFM [20] 87.3£5.7 - - 67.0+13.3 85.2+7.5 - - 68.84+10.5
Casual TCN [14] 87.9+82 864+7.7 84.8+129 724494 | 81.9+11.3 84.8+5.2 82.24+9.0 68.1 = 8.5
TeCNO [25] 88.6+7.8 86.5+7.0 888+174 751+6.9 - - - -
TMRNet [4] 90.1+7.6 903+33 89.5+£50 79.1+5.7 87.0+8.6 87.8+6.9 88.4+5.3 75.1+6.9
Trans-SVNet [13] 90.3+ 7.1 90.7+5.0 888474 T79.3+6.6 87.2+93 88.0+6.7 87.5+55 747+ 7.7
TCN* [59] 91.1+6.7 908445 876+11.7 79.1+85 | 82.9+108 85.8+54 82.7+9.0 69.7 + 8.7
Not end-to-end [21] | 91.5 4+ 7.1 - 872+82 7T7.2+11.2 88.2 +8.5 - 91.44+11.2 75.1+10.6
Semi Supervised Methods - 50% annotation time
LRTD [32] 82.5+8.4 79.7+9.0 80.9+8.1 6424+10.2 | 72.1+13.7 741+149 740+104 54.4+129
SurgSSL [33] 87.0+£74 84.2+£89 &85.2+11.1 70.5+12.6 79.6+9.4 802+11.3 79.6+11.5 62.0+11.1
Timestamp Supervised Methods - 26% annotation time

Casual TCN+Ours 88.6 £6.7 86.1+6.7 88.0+10.1 73.7+10.2 86.0 7.8 85.0+6.2 87.1+7.7 71.4+104
TCN*+Ours 91.9+56 895+44 90.5+£59 799+85 87.6+8.7 88.24+74 87.9+9.6 75.7+9.5

the annotation time can vastly be reduced compared with the
full annotation. In the implementation, one second of video is
converted to 25 frames. To save memory and computation cost,
we sample one frame every second. Hence, during annotation,
the surgeon labels the second, and during implementation,
we set the frame belonging to the timestamp second as the
annotation. Finally, we show the statistics of annotation time
of manually annotated timestamps on two datasets in Fig. 3 (c).
The results show that the annotation times of timestamps are
much less than those of full for all videos.
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C. Implementation Details

Our code is based on PyTorch using an NVIDIA GeForce
RTX 3090 GPU. We downsample the video to 1fps for training
in all experiments following previous works [3], [4], [5]. All
the frames are resized to a resolution of 250 x 250, and data
augmentations including 224 x 224 cropping, random mirror-
ing, and color jittering are applied during the training stage.
We get a pre-trained inception-v3 [62] on ImageNet [63]. The
batch size is set to 8, and an Adam optimizer with an initial
learning rate of le — 4 and weight decay of le — 5 is used.
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TABLE I TABLE Il
COMPARISON WITH DIFFERENT TIMESTAMP SUPERVISION METHODS ABLATION STUDY OF KEY COMPONENTS ON CHOLEC80 DATASET.
Method I AC (%) PR (%) RE (%) TA (%) UATD (S)’ AND ‘UATD (T)’ INDICATE USING UA'I:D I‘N THE SPATIAL
Choloc80 FEATURE AND TEMPORAL FEATURE EXTRACTORS. ‘LP’ INDICATES THE
Naive 66.9+ 5.6 62.3+6.5 748+ 6.5 182+ 4.4 LooP TRAINING WHICH IS DEFINED IN SEc. III-C
Lietal (14 | 794455 7187465 854455 cdotse DO UADM IP[ ACGH R® RKE® A
1 et al. . . . . . . . .
Ours 88.6+6.7 86.1+6.7 83.0+10.1 73.7+10.2 . ; % 06.9£9.7 623L£6.7  TA8LTS 48276
M2CALLG gl . % 82.3+76 781488 86.9 £ 6.5 66.0+ 74
Naive 675172 587E65 6L.7E65 448L67 % % 76£5.3 T7.3£6.7  8LOLT3  61.3:+5.2
Uniform 56.5+87 56777 57.0+7.9 382+56 ’ . 685+48 63.7+£62 752437 502461
Lietal [14] | 727£88 765+71 80.5+6.9 59.9+10.1 X |856£74 835+65 866461 70.9+8.2
Ours 86.0 7.8 85.0 6.2 871+ 7.7 71.44+10.4 v v vV | 886+6.7 861467 83.0+10.1 73.7+10.2

We further use a step learning rate scheduler where the step
size is two epochs and the decay rate is 0.5 for fine-tuning by
5 epochs. To train TCN, we use Adam optimizer with an initial
learning rate of le — 3 and cosine annealing for learning rate
decay. For all experiments, we set a dropout rate of 0.5 and
an uncertainty threshold t = 0.1; the detailed analysis is
shown in Table IV. The uncertainty is estimated by 5 forward
times Monte Carlo Dropout. [49]. The numbers of rounds of
uncertainty-aware temporal diffusion and loop training are set
to m = 4 and n = 2, respectively. Furthermore, the timestamp
annotations are simulated by randomly selecting one frame
from each action phase in the training videos.

D. Comparison With the State-of-the-Arts

We compare our less is more method with the state-of-
the-arts on the Cholec80 and M2CAI16 datasets, and report
their results in Table I. The numbers in Table I are the
mean and standard deviation of performance of all phases.
For example, in Cholec80, there are 7 phases. To obtain the
accuracy (AC) for each method, we first obtain AC for each
phase, the mean of AC of 7 phases is computed to obtain the
first number in Table 1. After that, we compute the standard
deviation of AC numbers of 7 phases to obtain the number
after “+/—". The computation of PR, RE and JA is like
AC. It is clear that our method outperforms previous data-
efficient methods, i.e., semi-supervised ones, on both data
efficiency and phase recognition performance. For example,
our timestamp supervision only requires 26% annotation time
of the full supervision [47], while semi-supervision needs 50%
annotation time [32]. Moreover, our method with the casual
TCN [14] achieves 88.6% of accuracy on Cholec80 dataset,
achieving the competitive performance compared to semi-
supervised methods. We can also find that our method can even
achieve the competitive performance compared with the fully
supervised methods, with only 26% annotation time of them.
Notably, the improvements of our method are more significant
in M2CAI16 than in Cholec80. This is because M2CAI16
contains more ambiguous frames [12], which degrades the
performance. We also illustrate the comparison of per-phase
performance with fully supervised methods in Fig. 5. The
results show that our methods achieve substantial improvement
for all phases. The details of why our methods can outperform
corresponding backbones in the fully supervised setup will be
discussed in Sec. IV-E.8.

E. Comparison With Different Timestamp Supervision
Methods

To evaluate the efficiency of our proposed uncertainty-
aware temporal diffusion (UATD) for surgical video timestamp
supervision, we compare our methods with three baseline
models, i.e., Naive, Uniform and Li et al. [14], and report
the results in Table II. Specifically, in Naive, we only use the
annotated timestamp labels to supervise the model training,
without generating any pseudo labels. In Uniform, the pseudo
labels are generated by a uniform way, i.e., the action labels
change at the center frame between two timestamp annota-
tions. For example, assuming two timestamps y;, and y;, with
11 < t, then the pseudo labels can be generated as:

. Yo, te(t, i+ (2 —11)/2]
yi = )
Yo, L€+ —1)/2,n).

It is clear that our method outperforms the other two methods
by a clear margin. Furthermore, we also compare Li et al. [14],
which is the SOTA in action segmentation under this setting.
Specifically, Li et al. [14] aims to identify changes of actions
to divide the videos into segments. For each action change,
the frames before the change should be assigned to the class
label of the previous timestamp and after the change to
the next timestamp, hence generating pseudo labels for all
frames. This method performed well in cases where there
are clear boundaries between different phases, like natural
videos, but generated worse results in surgical videos. This is
mainly attributed to the fact that compared to natural videos,
surgical videos have many ambiguous boundaries, leading to
degraded performance. Therefore, we propose a novel method
to generate pseudo labels for confident frames, effectively
avoiding erroneous pseudo labels near boundaries. As shown
in Fig. 4, the pseudo labels generated from [14] contain much
noise near the boundaries of each action, which may affect the
retraining of the network. Unlike [14], our method generates
more accurate and high-quality pseudo labels, thus achieving
better performance (see Table II). Furthermore, our method can
avoid generating low-confidence and noisy pseudo labels, thus
improving the robustness of the models. From Table. II, we can
also see that our method obtains 7% — 13% improvements over
all metrics.

F. Ablation Study

1) Effect of UATD and LP: There are two key components,
i.e., uncertainty-aware temporal diffusion (UATD) and loop
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Li et al. Li et al.
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(a) Video 03 (b) Video 12
Liet al Li et al.
ours ours
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(c) Video 04 (d) Video 13
Liet al. Li et al.
ours ours
GT GT
(e) Video 14 (f) Video 25
Fig. 4. Comparison of the visualization of pseudo labels generated by ours and Li et al. [14]. “GT” indicates the ground-truth. We sample four

videos, i.e., from Cholec80 ((a)-(b)) and M2CAI16 ((c)-(d)). It is clear that our method can generate more accurate pseudo labels compared with
Li et al. [14]; see red boxes. We illustrate the worst pseudo labels generated by our method shown in (e)-(f). Compared with Li et al. [14] which brings
erroneous pseudo labels into training, our method would avoid generating low confident labels, i.e., the uncertainty frames inside the phases would

make the model stop temporal diffusion (see black boxes).

Full Timestamp
[ CasualTCN I TCN [1CasualTCN +Ours [ TCN + Ours

[ EndoNet

Accuracy(%)

Fig. 5. Comparison of per-phase performance with fully supervised
approaches on Cholec80 dataset. ‘P1’ indicates the first phase and so
on. For each phase, the three methods on the left of the red line are
fully supervised methods, and the two on the right are our proposed
timestamp methods.

training (LP), in our method. We ablate the effect of them
in Table. IIL. It is clear that the proposed UATD can improve
the timestamp supervision with a clear margin, e.g., combined
with UATD, the model achieves 85.6% accuracy, outperform-
ing 18.7% over the baseline model. Futhermore, we could find
that LP (the fourth row in Table III) contributes to around 3%
improvements in AC, compared with the baseline (the first row
in Table III). The combination of UATD and LP can boost the
performance to 88.6%.

2) Impact of the Uncertainty Threshold t: The quality of
pseudo labels is dependent on pseudo labeling rate and pseudo
labels accuracy, which is controlled by the uncertainty thresh-
old t in Algorithm 1. In order to evaluate the effect of 7,
we compare the performance of the models with different t
and report the results in Table IV. “Labelling Rate” indicates
the ratio of the frames annotated by our method to all frames.
To evaluate the accuracy of our generated annotations, i.e.,
pseudo labels, we compare the generated pseudo labels with
the ground-truth. Specifically, for a frame, if the annotated

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT UNCERTAINTY THRESHOLDS
Labelling Labelling
AC (%) PR (%) RE (%) JA (%) Rate (%)  Accuracy (%)
T = o0 84.65 86.34 84.65 70.43 93.49 92.04
T=0.2 85.32  86.71  85.06 71.14 92.72 94.13
T=0.1 85.95  84.96 87.05 71.43 87.51 96.99
T=0.05 | 85.49 86.19 86.42 71.20 60.76 99.04
TABLE V

COMPARISON OF LABELLING RATE AND LABELLING ACCURACY OF
PSEUDO LABELS GENERATED BY UATD IN DIFFERENT ITERATIONS.
“TS” INDICATES THE INITIAL TIMESTAMP ANNOTATIONS

Iteration TS 1-st 2-nd 3-rd
Labelling Rate (%) 0.33 6770  76.82 84.45
Labelling Accuracy (%) | 100.00 98.69 9795 97.42

label generated by our method is equal to the ground-truth,
the frame is regarded as the correct annotated frame, and
vice versa. We can find that the higher uncertainty threshold
would lead to a higher pseudo labeling rate and the lower
accuracy of pseudo labels, and vice versa. For example, with
infinity threshold, i.e., first row in Table IV, pseudo labeling
rate can reach 93.49% while accuracy of pseudo labels is
only 92.04%. Such a higher labeling rate would introduce
more noisy labels, which degrades the labeling accuracy.
Furthermore, with different 7, ie., 0.2, 0.1 and 0.05, the
performance of our method is very stable. For example, the
variance for accuracy values with different thresholds is only
0.11% In our paper, we set 7 to 0.1 for the best trade-off.

3) Analysis of Pseudo Labels in Different lterations: Given
only a single manual labeled annotations, we show that our
model can generate more and more reliable pseudo-labels step
by step in Table V. “Labelling Rate” and “Labelling Accuracy”
are the same meaning as Table IV. It shows that our method
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Time
TABLE VI
QUANTITATIVE RESULTS OF START, END, MIDDLE AND RANDOM
| Lst TIMESTAMP POSITIONS ON CHOLEC80 DATASET
g”f‘.e?‘amp AC (%) PR (%) RE (%) JA (%)
| 2-nd osition
Start 90.64 87.92 88.37 76.75
End 90.17 88.35 82.24 70.75
‘ Middle 92.59 90.13 89.60 80.04
i3—rd Training step Random 91.86 89.51 90.52 79.90
T TABLE VI
COMPARISON OF ANNOTATION TIME BETWEEN A SINGLE TIMESTAMP
Fig. 6. Visualization of the different iterations of the pseudo labels AND TWO TIMESTAMPS

generated by our method. “GT” indicates the ground truth. “1-st”, “2-nd”
and “3-rd” indicate generated pseudo labels in the first, second and third
iterations respectively.

Acc PR RE A ACC PR RE = JA

Accuracy
a2 a2
Accuracy
a2 a2

o

&
5 g

o 1 2 3 4 0 1 2 3 4
Number of iterations Number of iterations

(a) (b)

Fig. 7. Analysis of the number of iterations for loop training on
(a) Cholec80 and (b) M2CAI16. We show the results of ACC, PR, RE and
JA of models with different numbers of iterations.
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Fig. 8. Box plots of performance of random timestamp annotations on
Cholec80 and M2CAI16 datasets.

can generate more and more pseudo labels as the number of
iterations increases. This is because each iteration of temporal
diffusion gives the temporal model extra information, and the
model can generate more pseudo labels next time. Also, the
accuracy of generated pseudo labels is very trustworthy. Since
the frames show very similar appearances to their adjacent
frames, the network can easily generate correct predictions
for the neighbor frames of the annotated frame. We also show
the visualization of the different iterations of the pseudo labels
generated by our method in Fig. 6.

4) Effect the Number of lterations for Loop Training: We
conduct the analysis of the number of iterations for loop
training in Fig. 7. The results show that more iterations
for loop training can improve the performance, since more
trustworthy labels are introduced to training. We also find that
there is no significant performance improvement after more
than two iterations. Hence, in this paper, we set the number
of iterations for loop training as two.

5) Robust to Different Timestamp Annotations: In our exper-
iments, the timestamp annotations are generated by randomly
selecting one frame to be annotated for each phase. In order
to evaluate whether our method is robust to the different

Video Index 01 05
Single Timestamp | 222s  155s
Two Timestamps 331s  279s

.......................................................

v
%
B

a
g

[ Supervision: GT or GT w/ UATD ]

* Backward
(— Forward

Fig. 9. Loop training for GT or GT masked with UATD, which consists
of two steps: the optimization of (1) the spatial feature extractor and (2)
the temporal feature extractor. Different from the dynamic pseudo labels
generated by UATD, GT or GT w/ UATD is fixed during training. Hence,
there is no need for iteratively optimizing the spatial feature extractor
and the temporal feature extractor. Here, we first train the spatial feature
extractor ntimes individually and obtain the fixed spatial features from the
well-trained spatial feature extractor. Then, the temporal feature extractor
is optimized m times separately. We set n = 2 and m = 4 as the loop
training for pseudo labels generated by UATD (see Section IV-C).

timestamps, we random 10 different timestamps by different
random seeds and analyse their impacts on the performance,
which is shown in Fig. 8. Specifically, we report the box
plots of 10 random timestamp annotations on Cholec80 and
M2CAII6 datasets. The short and flat boxes indicate that
our proposed method is robust to different timestamp annota-
tions, e.g., the difference between the maximum and minimum
is 2.3%. What’s more, our method can outperform most of the
methods in Table. I with even the worst timestamp annotations.

6) Effect of Timestamps in Different Phase Positions: In
order to explore the effect of timestamps in different phase
positions, we enforce the random timestamp annotations inside
the start, end or middle region of each phase. More specifically,
we regard the first 10% frames, the middle 10% frames and
the last 10% frames of each phase as the start, middle and end
regions. As shown in Table. VI, annotating at the start and end
frames of each phase would degrade the performance. This is
because that frames near boundaries are generally ambiguous,
which can be hard to act as an anchor of temporal diffusion.
In the contrast, the middle frames are more discriminative to
represent current phases and thus can generate more correct
pseudo labels. Actually, the surgeons ,i.e., the annotators, tend
to label the discriminative frames because they can easily rec-
ognize them when seeing through the whole video [47], which
ensures timestamp annotations efficiently and effectively.

7) Comparison Between a Single and Two Timestamps:
During the timestamp annotation, once a phase is identified
and the current timestamp is recorded, the surgeon could
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TABLE VIII
COMPARISON OF PERFORMANCE OF MODELS TRAINING WITH A
SINGLE TIMESTAMP AND TWO TIMESTAMPS

Method [ Annotation [ AC (%) PR (%) RE (%) JA (%)
Cholec80

Single 88.56 86.05 88.00 73.72

Casual TCN Two 88.79 89.61 88.12 73.80

77777777 Single” ~ | "91.86° ~ 89.51  90.52° ~ 79.90

TCN Two 91.91 89.66 90.81 79.93
M2CAIl6

Single 86.03 85.02 87.08 71.43

Casual TCN | Two 86.07 85.11 87.14 71.50

Less informative

(@) ' (b)

Ambiguous

Fig. 10. Comparison of pseudo labels generated by ours and ground-
truth. It is clear that our method avoids annotating the frames near
boundaries, where frames are generally (a) ambiguous or (b) less
informative. In our paper, we regard ambiguous frames as the frames
that show similar appearance in different phases following [12]. Less
informative frames indicate the frames that provide little information
to identify different phases, such as phases containing no actions or
instruments.

choose to record another timestamp for the phase. Here,
we compare the annotation cost between a single and two
timestamps in Table VII. Two videos, i.e.,“01” and “05”, are
sampled from Cholec80 and M2CAI16 respectively. The result
shows that two timestamp annotations would cost more time
than a single timestamp annotation, e.g., the surgeon would
spend 331s for “01” while annotating a single timestamp only
requires 222s. We also conduct experiments to compare the
performance of the models training with a single timestamp
and two timestamps, as shown in Table VIII. The results
show that two timestamp annotations cannot achieve clear
improvement but bring additional annotation costs. Hence,
annotating a single timestamp is much more efficient than two
timestamps, and we use the best efficient way to solve surgical
phase recognition in this paper.

8) Comparison of Generated Pseudo Label and Ground-
Truth: In our experiments, we find that our method only gen-
erates pseudo labels for discriminative frames while ignoring
the ambiguous ones near boundaries. As shown in Fig. 10, our
generated pseudo labels discard ambiguous or less informative
frames compared to the ground-truth. More importantly, the
model trained with our generated pseudo labels outperforms
the model trained with the ground-truth; see details in Table.
I. This indicates that the ambiguous boundary of two adjacent
actions would degree the performance.

G. Incorporate UATD Into Current Methods

As analyzed in Fig. 10, we find that our method can
only generate labels for discriminative frames, instead of

width
>

:

(b) Fixed width

Mask

Full annotations Full annotations

(a) Ours

Fig. 11. (a) Masking boundaries by using UATD to detect ambiguous
frames. (b) Masking boundaries by fixed width.

TABLE IX
EFFECTIVENESS OF INCORPORATING UATD INTO CURRENT
METHODS. ‘TIMESTAMP’ IS USING OUR GENERATED PSEUDO LABELS
BY UATD FROM TIMESTAMP ANNOTATIONS AND ‘GT w/ UATD’
INDICATES THE GROUND-TRUTH LABELS MASKED BY UATD; SEE
SEC. IV-G FOR DETAILS

Method [ Annotation [ AC (%) PR (%) RE (%) JA (%)
Cholec80
GT 87.94 86.40 84.81 72.40
Casual TCN | Timestamp 88.56 86.05 88.00 73.72
GT w/ UATD | 91.18 89.88 90.93 79.76
77777777 GT ~ [ 9L14 T 9084 ~ 87.64 7914
TCN Timestamp 91.86 89.51 90.52 79.90
GT w/ UATD 92.75 91.23 93.10 83.89
M2CAIL6
GT 81.91 84.82 82.24 68.06
Casual TCN | Timestamp 86.03 85.02 87.08 71.43
GT w/ UATD | 87.01 88.23 88.81 76.26
77777777 GT™ ~ ~ ~ [ 8294 8382 ~ 8269 6971
TCN Timestamp 87.62 88.25 87.91 75.72
GT w/ UATD | 88.32 89.03 89.23 78.81
JIGSAW
GT 80.12 82.02 81.16 69.11
Casual TCN | Timestamp 81.73 84.91 84.82 71.55
GT w/ UATD 83.27 85.51 85.27 72.81
77777777 GT™ ~ ~ ~ " [ 8143 ~8429 ~ 8371 7018 °
TCN Timestamp 83.18 85.19 85.72 72.12
GT w/ UATD 84.28 86.13 86.16 73.15
TABLE X
EFFECTIVENESS OF BOUNDARY MASK ON CHOLEC80 DATASET
Mask width  AC (%) PR (%) RE (%) JA (%)
0 91.14 90.84 87.64 79.14
3 92.04 91.87 89.07 81.44
5 92.31 92.26 89.52 82.12
10 92.75 92.86 90.57 83.32
20 92.68 93.20 90.40 82.66

ambiguous frames. It comes up that if masking ambiguous
frames from the ground-truth by our UATD can improve the
performance. To this end, as shown in Fig. 11 (a), we mask
some ground-truth labels near boundaries, based on the pseudo
labels generated by our methods. To be specific, we use
UATD to generate pseudo labels, and record the indexes
of unlabelled frames that are with high uncertainty. Then,
we remove those frames with the recorded indexes from the
ground-truth, and obtained a clean ground-truth to supervise
the model. Note that we use the pseudo labels generated in
the final iteration (see details in Section IV-C) to mask the
ground-truth. We regard the obtained clean ground-truth as
‘GT W/ UATD’ in the following. We compare the performance
of the models training with (a) ground-truth (GT), (b) pseudo
labels generated by UATD and (¢) GT W/ UATD, and report
the results in Table IX. The details for training pseudo labels
generated by UATD are illustrated in Fig. 2 and Section III-C.
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Fig. 12.  Feature similarity matrix visualization. The horizontal and
vertical axes represent the time indexes. We use cosine similarity to
measure the degree of similarity between two arbitrary frame-level
feature vectors within the same video. Each red box indicates each phase
in a video. Note that, frame-level features of the same phase should be
as similar as possible while separating one from others. Compared to
the model trained with the ground-truth (GT), better representations of
the features can be learned by our generated pseudo labels (right).

The training of GT W/ UATD is the same as the full supervised
training with GT, which is shown in Fig. 9. To show
the generalization of our proposed method, we also conduct
experiments on JIGSAW [64], which is a simulated dataset
with a clear domain gap. From Table IX, it is clear that
the model training with GT masked by UATD can achieve
the best results, and even outperforms the current SOTA;
see Table I for comparison. We further conduct experiments
on the models training with GT masked by the fixed width,
as shown in Fig. 11 (b). As illustrated in Table. X, masking
some frames near the boundary during training outperforms
the model without masking over around 1% — 3% in all
metrics. However, it will introduce a new hyper-parameter, i.e.,
the width of the mask, which is critical to the performance.
Hence, in order to achieve good performance, we need to
conduct many experiments to find the best choice, which is
very time-consuming. On the contrary, our method can be
used as an approach to clean the noisy labels in the ground-
truth automatically, without the need for hand-designed width.
To further explain this phenomenon, we visualize the feature
similarity matrix in Fig. 12. Each red box in each similarity
matrix indicates each phase in a video. It is clear that training
with our generate pseudo labels i.e., removing ambiguous
labels near boundaries between two phases, would help to
decrease intra-class distance and increase inter-class distance
simultaneously.

V. DISCUSSION

Surgical phase recognition is one key component of
computer-assisted surgery systems, which advances context
awareness in modern operating rooms. However, most exist-
ing works require full annotations which are expensive,

expertise-required and error-prone [31]. In contrast, we intro-
duce timestamp supervision which only requires one times-
tamp annotated by humans for each phase in a video. We invite
two surgeons to conduct both full and timestamp annotations
and record the time cost for these two annotations. To leverage
this supervision, we propose Uncertainty-Aware Temporal
Diffusion (UATD) to generate trustworthy pseudo labels for
those unlabeled frames, which is based on the property of sur-
gical phases. Furthermore, loop training is also introduced to
address the imbalance training and memory cost in timestamp
surgical phase recognition. The in-depth empirical studies of
the proposed UATD and LP based on timestamp supervision
discover four deep insights: 1) Timestamp annotation can
reduce 74% annotation time compared with the full annotation,
and surgeons tend to annotate those timestamps that are near
the middle of phases; 2) Extensive experiments demonstrate
that our method can achieve competitive results compared with
full supervision methods while reducing manual annotation
costs; 3) Less is more in surgical phase recognition, i.e., less
but discriminative pseudo labels outperform full but containing
ambiguous frames; 4) The proposed UATD can be used
as a plug-and-play method to clean ambiguous labels near
boundaries between phases, and improve the performance of
the current surgical phase recognition methods; see details in
Table IX.

Although our method achieves promising results, there are
some limitations. First, the temporal property we consider
is not overall yet. The diffusion in our method assumes
that the workflow is smooth without dramatic change and
hardly any ambiguous frame occurs in the internal phase ;
see Fig. 4 (e)-(f). But such an assumption may be false for
other datasets and in the future, we will study more com-
prehensive temporal relationships to handle the intra-phase
discontinuity. Moreover, the training process we propose is
time-consuming containing several iterations of the training
model from scratch. And we will design a more elegant
training process to link up the optimal learning from different
annotations, i.e., different rounds of temporal diffusion in our
methods.

Finally, we expect the community to focus more on label-
efficient surgical video analysis. The weakly setting of videos,
such as transcripts [42] and timestamp supervision, deserve
further attention and exploitation. And the related ideas can be
further investigated in other medical image analysis problems
in CT [65], [66], [67], [68], MRI [69], [70], [71].

VI. CONCLUSION

In this paper, we introduce the most annotation-saving
setting, namely timestamp supervision, for surgical phase
recognition. With timestamp supervision, we propose a novel
uncertainty-aware temporal diffusion (UATD) method to gen-
erate trustworthy pseudo labels according to the labeled
frames. Our main idea is to generate pseudo labels by con-
sidering the relationship among video frames. Results on two
datasets show that our method can achieve competitive perfor-
mance compared with the fully supervised setup. Moreover,
we also find that our method can be used as a labeling
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clean approach to remove the noisy labels near boundaries
to improve the generalization of the current surgical phase
recognition, which reveals an interesting phenomenon less is
more in this task. This paper provides some insights for label-
efficient surgical phase recognition and hopefully inspires
researchers to design label-efficient surgical video analysis
algorithms.
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