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Exploring Feature Representation Learning for
Semi-Supervised Medical Image Segmentation
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Abstract— This article presents a simple yet effective two-stage
framework for semi-supervised medical image segmentation.
Unlike prior state-of-the-art semi-supervised segmentation meth-
ods that predominantly rely on pseudo supervision directly
on predictions, such as consistency regularization and pseudo
labeling, our key insight is to explore the feature representation
learning with labeled and unlabeled (i.e., pseudo labeled) images
to regularize a more compact and better-separated feature space,
which paves the way for low-density decision boundary learning
and therefore enhances the segmentation performance. A stage-
adaptive contrastive learning method is proposed, containing
a boundary-aware contrastive loss that takes advantage of the
labeled images in the first stage, as well as a prototype-aware
contrastive loss to optimize both labeled and pseudo labeled
images in the second stage. To obtain more accurate proto-
type estimation, which plays a critical role in prototype-aware
contrastive learning, we present an aleatoric uncertainty-aware
method to generate higher quality pseudo labels. Aleatoric-
uncertainty adaptive (AUA) adaptively regularizes prediction
consistency by taking advantage of image ambiguity, which,
given its significance, is underexplored by existing works. Our
method achieves the best results on three public medical image
segmentation benchmarks.

Index Terms— Aleatoric uncertainty, consistency regulariza-
tion, contrastive learning, pseudo labeling, semi-supervised seg-
mentation.

I. INTRODUCTION

MEDICAL image segmentation is a foundational task for
computer-aided diagnosis and computer-aided surgery.

In recent years, considerable efforts have been devoted to
designing neural networks for medical image segmenta-
tion, such as U-Net [1], DenseUNet [2], nnUNet [3], and
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Fig. 1. Two toy examples which (a) visualize the feature space of an
indiscriminative semi-supervised model and (b) visualize the feature space
of a well-clustered semi-supervised model.

HyperDenseNet [4]. However, training these models requires
a large number of labeled images. Unlike natural images,
the professional expertise required for pixelwise manual
annotation of medical images makes such labeling tasks
challenging and time-consuming, resulting in the difficulty
of obtaining a large labeled dataset. Hence, semi-supervised
learning, which enables training using labeled and unlabeled
data, becomes an active research area for medical image
segmentation.

A common assumption of semi-supervised learning is that
the decision boundary should not pass through high-density
regions. Consistency regularization-based techniques [5], [6],
[7] achieve a decision boundary at a low-density area by
penalizing prediction variation under different input pertur-
bations. Entropy minimization (Entropy Mini)-based methods
aim to achieve high-confidence predictions for unlabeled data
either in an explicit manner [8] or an implicit manner [9],
[10], [11], [12]. As shown in Fig. 1, an ideal model should
pull together data points of the same class and push apart
data points from different classes in the feature space. As the
training set of semi-supervised learning includes labeled
and unlabeled images, it is challenging to directly optimize
the unlabeled images in the feature space without explicit
guidance. We observe that with unlabeled images, most semi-
supervised methods [5], [6], [7] can achieve more accurate
segmentation results than the model trained with only labeled
data. Therefore, the pseudo segmentation predicted by a semi-
supervised model on unlabeled data could possibly be made
even more stable and precise.

Motivated by this observation, we present a simple yet
effective two-stage framework for semi-supervised medical
image segmentation with the key idea to explore representation
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learning for segmentation from both labeled and unlabeled
images. The first stage aims to generate high-quality pseudo
labels, and the second stage aims to use pseudo labels to
retrain the network to regularize features for both labeled and
unlabeled images. Existing uncertainty-based semi-supervised
methods [5], [13], [14], [15] have achieved stunning results
by considering the reliability of the supervision for the
unlabeled images. These methods exploit the epistemic uncer-
tainty, a kind of uncertainty about the model’s param-
eters arising from a lack of data, either in the output
space [5], [13], [14] or in the feature space [14], as guid-
ance for identifying trustworthy supervision. Medical images
are often noisy, and the boundaries between tissue types
may not be well defined, leading to a disagreement among
human experts [16], [17], [18]. However, aleatoric uncer-
tainty that represents the ambiguity about the input data and
is irreducible by obtaining more data is ignored in these
methods.

To obtain high-quality pseudo labels for unlabeled images,
we present an aleatoric-uncertainty adaptive (AUA) method
for semi-supervised medical image segmentation. Under the
framework of the mean teacher (MT) model [19], to obtain
reliable target supervision for unlabeled data, instead of
estimating the model’s epistemic uncertainty [5], [13], [14],
we explore the aleatoric uncertainty of the model for noisy
input data. AUA first measures the spatially correlated
aleatoric uncertainty by modeling a multivariate normal dis-
tribution over the logit space. To effectively utilize unlabeled
images, AUA encourages the prediction consistency between
the teacher model and the student model by adaptively consid-
ering the aleatoric uncertainty for each image. Specifically, the
consistency regularization automatically emphasizes the input
images with lower aleatoric uncertainty, i.e., input images with
less ambiguity.

In the second stage, we retrain the network with pseudo
labels. To effectively regularize feature representation learning
in both stages, we propose stage-adaptive feature regulariza-
tion, including a boundary-aware contrastive loss (BCL) in
the first stage and a prototype-aware contrastive loss (PCL) in
the second stage. The main idea of BCL is to fully leverage
labeled images for representation learning. A straightforward
solution is to pull together the pixels to the same class and
push away pixels from different classes using a contrastive
loss. However, medical images usually contain a large number
of pixels. Simply utilizing contrastive loss would lead to a
high computational cost and memory consumption. To this
end, we present a BCL, where only randomly sampled pixels
from the segmentation boundary are optimized. In the second
stage, to effectively utilize both labeled and pseudo-labeled
images, i.e., unlabeled images for representation learning, we
present a PCL with each pixel’s feature pulled closer to its
class centroid, i.e., prototype, and pushed further away from
the class centroids it does not belong to. The main intuition is
that the trained model can generate pseudo labels for unlabeled
images in the second stage. Compared with the BCL, the PCL
better leverages the pseudo labels, especially those that may
not occur at the segmentation boundaries.

In summary, this article makes the following contributions.

1) We introduce stage-adaptive contrastive losses (i.e.,
BCL and PCL) to regularize a more compact and
better-separated feature space, which eases the learning
of a segmentation decision boundary.

2) We present AUA, an aleatoric uncertainty adaptive con-
sistency regularization method that paves the way for
PCL by improving pseudo label quality and prototype
estimation.

3) Our method achieves the state-of-the-art performance
on three public datasets. The ablation study validates
the effectiveness of our proposed method. Our code is
available at GitHub https://github.com/Huiimin5/AUA.

II. RELATED WORK

We briefly discuss related works in semi-supervised medical
image segmentation, including pseudo labeling and consis-
tency regularization. We also discuss some techniques related
to contrastive learning and uncertainty estimation.

A. Semi-Supervised Medical Image Segmentation

Semi-supervised learning (SSL) refers to training the model
with both labeled and unlabeled images. A wide span of
tasks has been explored, such as segmentation [7], clas-
sification [20], [21], [22], [23], and crowd counting [24].
For medical image segmentation, early work used graph-
based methods [25], [26] for semi-supervised segmentation.
Recently, semi-supervised medical image segmentation has
featured deep learning. The existing methods can be broadly
classified into two categories: pseudo labeling-based [9], [12],
[27], [28], [29] and consistency regularization-based meth-
ods [5], [6], [7], [13], [14], [30], [31], [32], [33], [34], [35],
[36], [37].

1) Pseudo Labeling-Based Methods: Pseudo labeling-based
methods handle label scarcity by estimating pseudo labels
on unlabeled data and using all the labeled and pseudo
labeled data to train the model. Self-training is one of the
most straightforward solutions [9], [27], [28] and has been
extended to the biomedical domain for segmentation [10],
[11], [38]. The main idea of self-training is that the model is
first trained with labeled data only and then generates pseudo
labels for unlabeled data. By retraining the model with both
labeled and pseudo labeled images, the model performance
can be enhanced. The model can be trained iteratively with
these two processes until the model performance becomes
stable and satisfactory. To reduce the noise in pseudo labels,
different methods have been developed, including identifying
trustworthy pseudo labels by uncertainty estimation [10],
using a conditional random field (CRF) [39] to refine pseudo
labels [38] or using pseudo labels only for fine-tuning [11].
In addition to such an offline pseudo label generation strategy,
online self-training methods [12], [40], [41] have been devel-
oped recently where pseudo labels are generated after each
forward propagation and used as immediate supervision.

Another pseudo labeling-based method is cotraining [42],
[43], [44] where multiple learners are trained and their dis-
agreement on unlabeled data is exploited for improving the
accuracy of pseudo labels. The basic idea is that each learner
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could learn different and complementary information from the
other learners. In some self-training methods, more than one
learner can be used, such as in [12], and the supervision
on unlabeled data is unidirectional. For example, the teacher
model [19] generates pseudo labels to supervise the student
model, while in a dual-model cotraining method such as [29],
supervision is bidirectional. Specifically, each base model’s
supervision of unlabeled data is based on the fused predictions
from the other base models, weighted by the confidence of
each model.

However, these methods ignore the class-aware feature
regularization, which is a key focus of this study. We will
demonstrate the importance of feature representation learning
in learning with labeled and pseudo labeled images.

2) Consistency Regularization-Based Methods: The goal
of consistency regularization-based semi-supervised meth-
ods [19], [45], [46] is to find the model that is not only accurate
in predictions but also invariant to input perturbations to
enforce the decision boundary traverse the low-density region
of the feature space. One line of these methods considers
invariance to input domain perturbations. For example, the
temporal ensembling model [45] achieves promising results
by accumulating soft pseudo labels on randomly perturbed
input images. An extension work with soft pseudo label
accumulation guided by epistemic uncertainty was proposed
in [13]. When the epistemic uncertainty of the prediction is
high, it will contribute less to pseudo label accumulation. The
MT model [19] achieves invariance to input perturbations by
promoting consistency between the predictions of the teacher
and the student models where input images fed to the teacher
model are added with noises. Extensions have also been
made from the perspective of reliability evaluation [5], [14],
[15] to provide reliable supervision from the teacher model
to the student model or considering structural information
of foreground objects [15], [30], [47]. In addition to input
domain perturbation, other perturbations that would not change
the semantics of the prediction have also been designed
and used to promote consistency. For example, consistency
among predictions given by differently designed decoders [31],
[32], [48], [49] or at different scales [6] or with different
modalities [33] where perturbations are beyond the input
level is maintained. The distribution-level consistency between
predicted segmentation maps on labeled data with those on
unlabeled ones [36], [50] has also been proved effective.
Aside from perturbations that lead to invariance in output,
there is another line of studies [7], [34], [35] that promotes
equivariance between the input and the output because some
input space transform, especially spatial transform such as
rotations, should lead to the same transform in the output
space.

Unlike these existing methods that are based on consis-
tency regularization, our method is a two-stage framework,
which improves the overall framework by regularizing the
feature representation. Moreover, we introduce an aleatoric
uncertainty-aware (AUA) method to represent inherent ambi-
guities in medical images and enhance the segmentation
performance by encouraging consistency for images with low
ambiguity.

B. Contrastive Learning in Semi-Supervised Image
Segmentation

Note that we exclude self-supervised learning methods
where unlabeled data are only used for task-agnostic purposes,
i.e., pretraining such as in [51], even though performance
under semi-supervised setting is also reported. We only con-
sider contrastive learning for task-specific use [52], [53],
[54]. Among these works, only [54]’s goal is to promote
interclass separation and intraclass compactness. However,
in [54], pseudo labels are obtained from the model trained with
labeled data only, whose performance is inferior to our first-
stage model, where pseudo labels are obtained from a model
that takes advantage of consistency regularization on unlabeled
data and feature regularization on labeled data. In [53], inter-
class separation is considered by taking pixels with different
pseudo labels as negative pairs, but intraclass compactness is
ignored since the positive pair is built on the same pixels from
different crops, which essentially is an extension of instance
discrimination for the segmentation task. To the best of our
knowledge, ours is the first study with pixel-level feature
regularization aiming at intraclass compactness and interclass
separation for semi-supervised medical image segmentation.

C. Uncertainty Estimation in Semi-Supervised Medical
Image Segmentation

Uncertainties generally fall into two categories: epistemic
and aleatoric. Epistemic uncertainty is about a model’s param-
eters caused by a lack of data, while aleatoric uncertainty is
caused by intrinsic ambiguities or randomness of input data
and cannot be reduced by introducing more data. Early meth-
ods measure uncertainty using particle filtering and CRFs [55],
[56]. More recently, in Bayesian networks, epistemic uncer-
tainty is usually estimated with Monte Carlo dropout [57],
which has been extended for the semi-supervised medical
image segmentation task [5], [13], [14]. Aleatoric uncertainty
is estimated either without considering correlations between
pixels [57] or with a limited ability to model spatial correlation
since it is captured by uncorrelated latent variables from
multivariate normal distribution [16], [17]. Monteiro et al. [18]
proposed an aleatoric uncertainty estimation technique where
correlations between pixels are considered. Given the ubiq-
uitous existence of noises or ambiguities in medical images,
aleatoric uncertainty has been overlooked for semi-supervised
medical image segmentation. In this work, we propose an
aleatoric uncertainty adaptive consistency regularization tech-
nique, where correlations between pixels are considered when
measuring aleatoric uncertainty.

III. METHOD

Fig. 2 visualizes the overview of the proposed two-stage
framework. The input image is first fed into the AUA module
to get a segmentation model, which generates a high-quality
pseudo label. Then, we introduce the stage-adaptive contrastive
learning method, consisting of a BCL on labeled data only in
the first stage and a PCL on all data in the second stage.
By sequential training through the first and second stages,
we generate the final segmentation results.
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Fig. 2. Overview of our method. The proposed loss functions (AUA, BCL, and PCL) are boxed out in brown. First, we propose AUA under an MT framework,
which consists of a student model (parameterized by θ student) and a teacher model (parameterized by θ teacher). AUA is composed of an aleatoric uncertainty
estimation module (boxed out in green) and an adaptive consistency regularization module (boxed out in orange). Second, stagewise contrastive learning is
proposed, which consists of BCL on boundary pixels of labeled data in the first stage, as well as a PCL, which is applied to all pixels in the second stage.

A. Preliminaries: Deterministic Medical Image Segmentation

Here, we consider a C-class segmentation task on 3-D
volumes with size H × W × D × C , where H , W , and D
denote the height, width, and depth, respectively. Given an
image x ∈ RH×W×D×C and its ground truth y with the same
size, the loss function of a general segmentation network is
designed to minimize the negative log likelihood, formulated
as

Lsup = − log p(y|x) = − log
∫

p(y|g)p(g|x)dg (1)

where g denotes logits.
In a deterministic segmentation network, i.e., assuming

p(g|x) = δ( f (g|x; θ)) and independence of each pixel’s
prediction on the other, where f is a neural network parame-
terized by θ and δ denotes the Dirac delta function, the loss
function in (1) can be rewritten as

Lsupce
= − log p(y|g) = −

V∑
i=1

C∑
c=1

yiclog softmax(gi )c. (2)

For simplicity, we use a 1-D scalar i to index each pixel
out of a whole set of V = H ∗ W ∗ D pixels in a 3-D volume.
Equation (2) is the cross-entropy function commonly used in
segmentation models.

B. Preliminaries: Aleatoric Uncertainty Estimation for
Segmentation

To model inherent ambiguities of input data, we follow [18]
and assume a multivariant Gaussian distribution around logits,
i.e., g|x ∼ N (µ(x), σ (x)), with µ(x) ∈ RH×W×D×C and
σ(x) ∈ R(H×W×D×C)2

. The Monte Carlo integration of S
samples is applied to approximate the intractable integral

operation, leading us from (1) to

Lsupau
= − log

1
S

S∑
s=1

p
(
y|g(s)) (3)

= −logsumexpS
s=1 log p

(
y|g(s))

+ log(S). (4)

The logsumexp (LSE) operation is defined as LSE(l1, . . . , lS)=
log(exp(l1)+· · ·+exp(lS)) where ls = log p(y|g(s)). We refer
to the calculation of log p(y|g(s)) to (2), where g(s) is a sample
out of g|x ∼ N (µ(x), σ (x)). As pointed out in [18], the
full-rank covariance matrix σ(x) is computationally infeasible,
so we also adopt a low-rank (specifically, r -rank) approxima-
tion defined as

σ(x) = F̃ F̃ T
+ D̃ (5)

where F̃ ∈ RH×W×D×C×r denotes the factor part of a low-rank
form of the covariance matrix and D̃ ∈ RH×W×D×C denotes
the diagonal part. Compared with a full-rank parameterization,
where (H × W × D × C)2 parameters should be estimated,
which is beyond what a GPU card can accommodate unless
for very small images, its low-rank approximation is more
computationally feasible since the complexity reduces from
quadratic to linear, i.e., H × W × D × C × r (for F̃)
+H × W × D × C (for D̃). This approximation might lead
to a compromise of estimated aleatoric uncertainty but still
can bring effective guidance for semi-supervised learning,
as shown in our experiments.

C. Aleatoric Uncertainty Adaptive Consistency
Regularization

It is desirable if the semi-supervised segmentation model
can be aware of its chance of making mistakes on unlabeled
data. We resort to aleatoric uncertainty that captures input
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ambiguities, to guide how much the student model should
learn from the teacher model. A consistency regularization
technique adaptive to aleatoric uncertainty is proposed.

Given an unlabeled image xu , the predicted distribution
by the student model parameterized by θ s is denoted as
ps = p(yu

|xu
; θ s). Similarly, we can obtain the teacher

model’s prediction pt = p(yu
|xu ′

; θ t ) over the perturbed
version of the same input xu ′ by Gaussian noise injection,
where parameters of the teacher model, denoted as θ t , are
updated with an exponential moving average of the parameters
of the student model. The consistency between the teacher
model’s predictions and the student model’s predictions on
unlabeled data is encouraged by minimizing the generalized
energy distance [16], [58], which is defined as

L′

con = 2Eys∼ps ,yt ∼pt d(ys, yt )

− Eys1∼ps ,ys2∼ps d(ys1, ys2)

− Eyt1∼pt ,yt2∼pt d(yt1, yt2). (6)

To approximate the intractable expectation operation in (6), we
take S samples out of ps and pt , respectively. The consistency
regularization loss function can be reformulated as

Lcon = 2
S∑

is=0

S∑
it =0

d
(

y(is )
s , y(it )

t

)

−

S∑
is1=0

S∑
is2=0

d
(
y(is1)

s , y(is2)
s

)
−

S∑
it1=0

S∑
it2=0

d
(

y(it1)
t , y(it2)

t

)
y(is )

s , y(is1)
s , y(is2)

s ∼ ps

y(it )
t , y(it1)

t , y(it2)
t ∼ pt . (7)

In (7), d is defined as the generalized Dice loss [59]

d
(
yi , y j)

= 1−

∑H×W×D
k=1

∑C
c=1

(
yi

kc · y j
kc

)
∑H×W×D

k=1
∑C

c=1

(
yi

kc · yi
kc

)
+

∑H×W×D
k=1

∑C
c=1

(
y j

kc · y j
kc

)
(8)

where k indexes each pixel out of a whole set of V = H∗W∗D
pixels in a 3-D volume and c indexes each class out of a total
of C classes.

The optimum of (7) is 0, which means that the optimum
of the first term is the sum of the last two. This consistency
regularization metric is adaptive to aleatoric uncertainty in the
sense that if the diversity between samples of the student (or
the teacher) model is high, i.e., the values of the last two
terms of (7) are large, indicating a high aleatoric uncertainty,
the pairwise similarity of samples from the student and the
teacher models, denoted by the first term of (7), would be less
strictly constrained. On the contrary, on input data where a low
diversity is estimated, implying the aleatoric uncertainty is low
and the model is more likely to generalize well, the student
model automatically learns more from the teacher model by
optimizing the first term to a smaller value.

To summarize, the AUA loss is defined as follows:

LAUA = Lsupau
+ λgLcon (9)

where λg is the scaling weight to balance the uncertainty
estimation loss and the generalized energy distance loss.

D. Stage-Adaptive Feature Regularization

We introduce a stage-adaptive feature learning method con-
sisting of a BCL and a PCL, to enhance the representation
learning with only labeled images and both labeled and pseudo
labeled images, respectively. A natural solution is a contrastive
loss with features of pixels belonging to the same class (i.e.,
both foreground pixels or both background pixels) as positive
pairs and features belonging to different classes (i.e., one from
foreground and the other from background) as negative pairs.
This strategy allows us to perform pixelwise regularization but
consumes memory quadratically to the number of pixels, so
we propose a stage-adaptive contrastive learning method with
these concerns properly handled. To reduce the computational
cost, at the first stage, we only optimize the feature represen-
tation for pixels around the segmentation boundaries, using a
BCL. At the second stage, with more accurate pseudo labels
on unlabeled data, we introduce a PCL to fully leverage both
labeled and pseudo labeled images for representation learning.

1) Boundary-Aware Contrastive Learning: As a balance of
benefits of pixelwise feature level regularization and compu-
tational costs, we build positive and negative pairs based on
a random subset of near-boundary pixels, arriving at the BCL
formally defined as

LBCL =

∑
i∈N B

−1
P(i)

∑
pi∈P(i)

log
exp

(
f 1
i · f 1

pi/τ1

)
∑

o∈O(i) exp
(

f 1
i · f 1

o /τ1
) (10)

where N B contains indexes of randomly sampled
near-boundary pixels from an input image, O(i) contains
indexes of the other pixels except pixel i and P(i) contains
indexes of pixels in O(i) belonging to the same class as
pixel i . The feature vectors f 1

i , f 1
o and f 1

pi are obtained from
a 3-layer convolutional projection head, which is connected
after the layer before the last layer. The temperature τ1 is set
to be 0.07. By subsampling, BCL reduces the computational
cost from (H × W × D)2 (i.e., pixelwise contrastive loss) to
N B2.

2) Prototype-Aware Contrastive Learning: In the second
stage, the way to regularize an indiscriminative feature space
as in Fig. 1(a) is to encourage each feature to be closer to any
other pixels that share the same label and further away from
the centroid of opposite class so that forming a feature space
in Fig. 1(b) is encouraged, which is defined as

L′

PCL

= −
1

|P|

∑
i∈P

−1
|P(i)\{i}|

×

∑
pi∈P(i)

log
exp

(
f 2
i · f 2

pi/τ
)

exp
(

f 2
i · f 2

pi/τ
)
+

1
|N (i)|

∑
ni∈N (i) exp

(
fi · f 2

ni/τ
)

(11)
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where P contains indexes of all pixels. P(i) and N (i) contains
the indexes of positive pixels, i.e., those sharing the same class,
and negative pixels, i.e., those with different labels to pixel i ,
respectively. Features extracted from the second stage model
are denoted as f 2

∗
where ∗ can be an index of any pixel.

In [60], by assuming a Gaussian distribution for features
belonging to each class, the computational cost of (11) can be
reduced from quadratic to linear, leading to a regularization
formulated as

LPCL

= f 2
i

⊤
σp f 2

i

−
1

|P|

∑
i∈P

log
exp

(
f 2
i ·µp

τ2
+

f 2
i

⊤
σp f 2

i
2τ 2

2

)
exp

(
f 2
i ·µp

τ2
+

f 2
i

⊤
σp f 2

i
2τ 2

2

)
+exp

(
f 2
i ·µn

τ2
+

f 2
i

⊤
σn f 2

i
2τ 2

2

)
(12)

where µp and σp are the mean and covariance matrix of
the positive class to pixel i , respectively, and similarly, µn

and σn are the mean and covariance matrix of the negative
class corresponding to pixel i , respectively. These prototype
statistics for each class c are estimated from the first-stage
model with an moving average update of extracted features
with each update at t-step formulated as

µc
t =

N c
t−1µ

c
t−1 + nc

t µ
′c
t

N c
t−1 + nc

t

σ c
t =

N c
t−1σ

c
t−1 + nc

t σ
′c
t

N c
t−1 + nc

t
+

N c
t−1nc

t

(
µc

t−1 − µ
′c
t

)(
µc

t−1 − µ
′c
t

)⊤(
N c

t−1 + nc
t
)2

(13)

where Nt−1 denotes the total number of pixels belonging to
class c seen before time step t and nt denotes the pixel number
of class c in the loaded image at time step t . µ

′c
t and σ

′c
t denote

the mean and covariance, respectively, of features belonging
to class c in images at t . The final prototypes are estimated
after 3000 iterations and the temperature τ2 is set to be 100.
By utilizing prototypes, BCL reduces the computational cost
from (H × W × D)2 (i.e., pixelwise contrastive loss) to H ×

W × D × C .

E. Stagewise Training as a Unified Framework

To summarize, in the first stage, the loss function is defined
as

Lstage1 = LAUA + λcLBCL (14)

where λc is the scaling weight for BCL loss. To this end,
pseudo labels on unlabeled data with higher quality can
be obtained thanks to joint prediction regularization (with
AUA) and feature regularization (with BCL), which enables
retaining a stronger segmentation model at the second stage
by regularizing both predictions and features over the whole
dataset in a label-aware manner. The loss function in the
second stage is given as follows:

Lstage2 = Lsupced
+ λrLPCL (15)

where Lsupced
is defined as the average of cross-entropy loss

and Dice loss as a common practice in segmentation, which
serves as pseudo labeling, and λr is the weight for PCL loss.

IV. EXPERIMENTAL RESULTS

A. Datasets and Preprocessing

1) Pancreas CT Dataset: Pancreas CT dataset [61] is a
public dataset containing 80 scans with a resolution of 512 ×

512 pixels and slice thickness between 1.5 and 2.5 mm. Each
image has a corresponding pixelwise label, which is annotated
by an expert and verified by a radiologist.

2) Colon Cancer Segmentation Dataset: Colon cancer
dataset is a subset of Medical Segmentation Decathlon (MSD)
datasets [62], consisting of 190 colon cancer CT volumes.
Pixel-level label annotations are given on 126 CT volumes.
Among these volumes, we randomly split 26 CT volumes as
a test set and use the rest for training.

3) Left Atrium MR Dataset: The left atrium (LA) dataset
contains 100 magnetic resonance (MR) image scans with an
isotropic resolution of 0.625 × 0.625 × 0.625 mm. This
dataset is fully annotated with pixel-level supervision, among
which 80 scans are used for training and the remaining 20 are
used for validation.

4) Preprocessing: To fairly compare with other methods,
we follow preprocessing in [33] by clipping CT images to
a range of [−125, 275] HU values, resampling images to 1
× 1 × 1 mm resolution, center-cropping both raw images
and annotations around foreground area with a margin of
25 voxels, and finally normalizing raw images to zero mean
and unit variance. On the Pancreas dataset, we apply random
crop as an augmentation on the fly, and the Colon dataset is
augmented with random rotation, random flip, and random
crop. On both CT datasets, 96 × 96 × 96 subvolumes are
randomly cropped from raw data and fed to the segmentation
model for training. On the LA dataset, we apply center crop
as well as normalize the intensities to zero mean and unit
variance for preprocessing. During training, we adopt random
crop to 112 × 113 × 80 for on-the-fly augmentation.

B. Implementation Details

1) Environment: All experiments in this work are imple-
mented in Pytorch 1.6.0 and conducted under python 3.7.4 run-
ning on an NVIDIA TITAN RTX.

2) Backbone: VNet [63] is used as our backbone where
the last convolutional layer is replaced by a 3-D 1 × 1 ×

1 convolutional layer. On top of that, a projection module
and an aleatoric uncertainty module are built for feature
regularization and aleatoric uncertainty estimation, respec-
tively. Similar to [54], the projection head constitutes three
convolutional layers, each followed by ReLU activations and
batch normalization, except for the last layer, which is fol-
lowed by a unit-normalization layer. The channel size of each
convolutional layer is set as 16. The aleatoric uncertainty
module is comprised of three one-layer branches predicting
means, covariance factors, and covariance diagonals. Output
sampling is implemented by calling the sample function of
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TABLE I
COMPARISON WITH STATE-OF-THE-ART ON PANCREAS DATASET WITH 20% LABELED DATA. THE UP ARROW IMPLIES THAT THE LARGER THE

NUMBER, THE BETTER THE PERFORMANCE. THE DOWN ARROW IMPLIES THAT A LOWER NUMBER INDICATES A BETTER PERFORMANCE

TABLE II
COMPARISON WITH STATE-OF-THE-ART ON PANCREAS DATASET WITH 5% LABELED DATA

torch.distributions.LowRankMultivariateNormal.1 The teacher
model parameters are updated by taking a moving average of
the student model parameters. For BCL, the near-boundary
pixels are obtained from the difference set of original fore-
ground pixels and resulting foreground pixels after morphol-
ogy dilation of 1-pixel radius.

3) Training Details: Our model is trained with a stochastic
gradient descent (SGD) optimizer with 0.9 momentum and
0.0001 weight decay for 6000 iterations. A step decay learning
rate schedule is applied where the initial learning rate is set
to be 0.01 and dropped by 0.1 every 2500 iterations. For
each iteration, a training batch containing two labeled and
two unlabeled subvolumes is fed to the proposed model, with
each subvolume randomly cropped with the size of 96 × 96
× 96 for CT volumes and 112 × 112 × 80 for MR imaging
(MRI). On the test set, predictions on subvolumes with the
same size using a sliding window strategy with a stride of
16 × 16 × 16 (for CT volumes) or 18 × 18 × 4 (for MRI
on LA dataset) are fused to obtain the final results.

4) Evaluation Metrics: We use Dice (DI), Jaccard (JA),
the average surface distance (ASD), and the 95% Hausdorff
distance (95HD) to evaluate the effectiveness of our semi-
supervised segmentation method. DI and JA mainly measure
the amount of overlap between output segmentation maps and

1https://pytorch.org/docs/stable/distributions.html#torch.distributions.
lowrank_multivariate_normal.LowRankMultivariateNormal

human annotations. The latter two metrics, ASD and 95HD,
measure surface distance and are more sensitive to errors over
the segmentation boundary.

C. Results on Pancreas Dataset
1) Our Settings: Since the predictions on unlabeled data

may be inaccurate in the early stage of training, we follow
common practices [5], [33] and use a Gaussian ramping up
function λg(t) = 0.15 ∗ e−5(1−(t/tmax))

2
to control the strength

of consistency regularization, where t denotes the current time
step and tmax denotes the maximal training step, i.e., 6000 as
introduced previously. The constant is used to scale BCL, i.e.,
λc is set to be 0.09 given 20% labeled data and 0.01 given 5%
labeled data. In the second stage of training, the PCL weight
λr is always set to be 0.1.

2) Compared Methods: Table I shows the results on the
Pancreas dataset. We compare with recent algorithms, includ-
ing MT [19], deep adversarial network (DAN) [50], Entropy
Mini [40], uncertainty-aware mean teacher (UAMT) [5], cross-
consistency training (CCT) method [49], shapeaware adversar-
ial network (SASSNet) [36], dual-task consistency (DTC) [33],
uncertainty rectified pyramid consistency (URPC) [6], and
mutual consistency network (MC-Net) [48]. Previous methods
are mainly benchmarked on the first version of the Pancreas
dataset with 12 labeled volumes and 50 unlabeled volumes,
where, however, two duplicates of scan #2 are found. In case
some of these three samples are in the training set and the rest
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TABLE III
COMPARISON WITH STATE-OF-THE-ART ON COLON TUMOR DATASET WITH 5% LABELED DATA

TABLE IV
COMPARISON WITH STATE-OF-THE-ART ON LA DATASET WITH 20% LABELED DATA

are in the test set after a random split, we use version 2 where
two duplicates are removed, leaving us the same number of
labeled data but 2 less, i.e., 48 unlabeled data. Even under
a more strict scenario, our proposed model achieves the best
performance among existing works.

3) Results Analysis: The first row, i.e., a fully supervised
baseline on the partial dataset, shows the lower bound of the
semi-supervised segmentation methods, whereas the second
row, i.e., a fully supervised model on a fully labeled dataset,
shows the upper bound performance. We can observe that our
method achieves 79.81% on Dice, surpassing the current state-
of-the-art by 0.54%. Notably, our method is very close to the
fully supervised model that employs all volumes supervised by
human annotations, showing the effectiveness of the proposed
semi-supervised method.

4) More Challenging Setting With 5% Labeled Data: To
further validate our method under a more challenging scenario,
we reduce the number of labeled data to only 5% and use the
rest 95% as unlabeled. As shown in Table II, in such a small-
data regime, a performance drop of every semi-supervised
learning method is observed compared to its counterpart in
a big-data regime in Table I where 20% labeled are avail-
able, which confirms common sense. It is observed that our
method consistently outperforms other methods. Specifically,
our method surpasses all the other semi-supervised methods
and outperforms the current state-of-the-art by 1.18% on Dice,

which demonstrates that the effectiveness of our method is
more obvious in a more challenging setting.

5) Comparison of Computational Cost: Due to a two-stage
pipeline, our method takes around 2× hours to finish training
compared with existing single-stage works. However, during
inference, the proposed method does not introduce heavy
computational overhead. Existing works use V-Net as the
backbone for inference and their computational time costs are
very similar. As mentioned in Section IV-B, we only append
one more layer after V-Net and the time cost is very close: 4.70
(ours) versus 4.67 (V-Net), measured by seconds per sample.
It means that in practical use, our method is as efficient as
existing works.

D. Results on Colon Dataset

Table III shows the results on the Colon dataset. To get a
result, we set λg(t) to be 0.15 ∗ e−5(1−(t/tmax))

2
, and the scaling

weight of BCL, i.e., λc, is set to be 0.03. In the second stage
of training, the weight PCL is set to be 0.1. We compare our
method with several state-of-the-art methods using 5% data as
labeled and the rest as unlabeled. Again, we tune hyperparam-
eters for previous methods so that these methods can reach the
best performance on this dataset. In Table III, by comparing
the second row with Table II, we notice that under a fully
supervised setting using a full dataset, the performance on the
Colon dataset is lower than the Pancreas dataset, indicating
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TABLE V
ABLATION STUDY ON THE PANCREAS DATASET. BCL REFERS TO BOUNDARY-AWARE CONTRASTIVE LEARNING AND PCL REFERS TO

PROTOTYPE-AWARE CONTRASTIVE LEARNING. PSEUDO LABELING REFERS TO DIRECTLY RETRAINING THE NETWORK
WITH PSEUDO LABELS WITHOUT PCL

TABLE VI
ABLATION STUDY ON THE COLON DATASET. BCL REFERS TO BOUNDARY-AWARE CONTRASTIVE LEARNING AND PCL REFERS TO PROTOTYPE-AWARE

CONTRASTIVE LEARNING. PSEUDO LABELING REFERS TO DIRECTLY RETRAINING THE NETWORK WITH PSEUDO LABELS WITHOUT PCL

Fig. 3. Visualized ablation study. Regions highlighted in red are true positive areas, i.e., pixels correctly predicted. Green and blue regions represent false
negatives, i.e., foreground pixels incorrectly predicted as background, and false positives, i.e., background pixels incorrectly predicted as foreground.

that the Colon dataset is more challenging. By comparing
semi-supervised segmentation methods with a fully supervised
setting using the partial dataset, i.e., the result in the first
row of Table III, we observe stronger performance, showing
that leveraging unlabeled data can improve the segmentation
performance, which confirms common sense. Our method
achieves superior performance compared with all previous
works by a large margin (3.43%), which indicates that our
method can make better use of unlabeled data.

E. Results on LA Dataset

To demonstrate that our method is generalizable to differ-
ent medical image modalities, we also conduct comparative
experiments on the LA dataset, as shown in Table IV. To get
a result, we set λg(t) to be 0.15 ∗ e−5(1−(t/tmax))

2
, and the

scaling weight of BCL, i.e., λc, is set to be 0.09. In the second
stage of training, the weight PCL is set to 0.1. We compare
with state-of-the-arts benchmarked in [47] using 20% data
as labeled and the rest as unlabeled. As a sanity check, all
semi-supervised methods can outperform a fully supervised
baseline on the partial dataset (i.e., 16 labeled MR images),
demonstrating a meaningful utilization of unlabeled data.
In Table IV, compared with previous works, the proposed
method achieves the best results, closing the performance gap

with a fully supervised upper bound (i.e., trained with a full
dataset).

F. Ablation Studies

Here, we ablate each component of our proposed framework
on the Pancreas dataset with 20% as labeled (Table V) and on
the Colon dataset with 5% as labeled (Table VI). We gradually
add our proposed component and showcase their performances
in terms of four metrics.

First, we validate the effectiveness of the adaptive super-
vision fitting scheme: AUA. On both datasets, as shown in
the second row of Tables V and VI, applying AUA achieves
superior performance over the fully supervised model, i.e.,
V-Net. This performance gain mainly comes from its ability
to identify and adaptively learn from trustworthy supervi-
sion. Specifically, AUA automatically estimates the aleatoric
uncertainty of input data and downweights supervision from
low-quality images so that the student model learns from
more accurate supervision of the teacher model. Second,
we demonstrate the effectiveness of our stage-aware con-
trastive learning. BCL can boost the performance on top of
AUA further by a margin of 1.02% and 0.96% on Pan-
creas and Colon datasets, respectively, and PCL improves
its baseline (as shown in the fourth row) by 0.73% and
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Fig. 4. Comparison between visualized segmentation maps obtained by the state-of-the-art and our method. Regions highlighted in red are true positive
areas, i.e., pixels correctly predicted. Regions highlighted in green and blue are false negatives, i.e., foreground pixels incorrectly predicted as background,
and false positives, i.e., background pixels incorrectly predicted as foreground.

TABLE VII
ABLATION STUDY ON THE EFFECT OF HYPERPARAMETER λc ON THE

PANCREAS DATASET

2.25%, respectively. Both techniques are designed to pull
features of pixels belonging to the same class closer and push
features belonging to opposite classes further, which shapes a
more compact (inside each class) and better-separated (across
different classes) feature space, leading to a more robust and
effective semi-supervised method.

To get a qualitative sense of the effectiveness of each com-
ponent of our pipeline, in Fig. 3, we plot segmentation results
by gradually adding the proposed technique. We illustrate
a failure case of the baseline model where the foreground
pixels are mislabeled as background. Adding our technique
one by one is able to recall more foreground pixels and
output segmentation maps with gradually larger overlap with
the ground truth.

In addition, we ablate the effect of λc, the weight balancing
AUA loss, and the BCL loss in the first stage of training. Its
values are chosen from 0.03, 0.05, 0.07, and 0.09. Table VII
shows that the final results are robust to various choices of λc.

Finally, we ablate the robustness of the proposed method to
the amount of unlabeled data. In Table VIII, we demonstrate
the performance of our method by increasing the unlabeled
data number from a small split (i.e., 1/4) to full. We can
observe a growing trend in performance, and it is safe to
conjecture that with more in-domain unlabeled data, our
method can obtain extra performance gain.

G. Qualitative Comparison With the State-of-the-Arts

We visualize the segmentation predictions obtained from
other state-of-the-art methods and ours in Fig. 4. We highlight
true positive, false negative, and false positive pixels in red,
green, and blue, respectively. We can observe that for the

TABLE VIII
ABLATION STUDY ON AN INCREASING NUMBER OF UNLABELED DATA

other state-of-the-art works, they either achieve a lower recall,
such as MT [19], DAN [50], Entropy Mini [40], UA-MT [5],
SASSNet [36], DTC [33], and MC-Net [48], or suffer from
more false positives, such as DAN [50] and URPC [6].
However, the prediction of our method has a greater overlap
with the ground truth.

V. DISCUSSION

In this article, to alleviate heavy reliance on pixelwise
labels, which requires considerable human efforts, we pro-
pose a novel semi-supervised learning method by taking
advantage of aleatoric uncertainty estimation and exploring
feature representation learning. First, on top of the MT frame-
work, we present AUA that estimates each image’s aleatoric
uncertainty and automatically downweights supervision on
ambiguous images so that the trained model is able to
generate more reliable pseudo labels. However, image ambi-
guity is an underexplored aspect in semi-supervised learning.
Second, we explore representation learning and propose a
state-adaptive contrastive learning method. In the first stage,
a BCL is designed to regularize labeled image features, and
in the second stage, we use a PCL to regularize both labeled
and unlabeled features. Superior performance across Pancreas-
CT, Colon cancer, and LA datasets validates the superior
performance of our method as well its generality to different
data modalities.

This study has comprehensive applicability. First, the pro-
posed method can be used to automate downstream diagnosis.
It is found in recent research [65], [66] that combining
segmentation results benefits disease diagnosis classification
tasks. The proposed method allows for training a segmentation
model that achieves satisfactory results without relying on
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large-scale human labels and thus can be applied to down-
stream disease diagnosis tasks. Second, in clinical practice, our
method can serve as another expert for doctors’ reference. For
example, a doctor may take into consideration colon cancer
segmentation results of the proposed method and make a better
diagnosis of cancer staging.

The main limitation of this study is lacking an automatic
mechanism to differentiate incorrect pseudo labels from cor-
rect ones in the second stage. In this work, we put more effort
into generating more accurate pseudo labels prior to their use.
However, given pseudo labels, how to make better use is also
a nontrivial question. Online confidence thresholding [67],
[68] can be a potential solution to identify noisy pseudo
labels out of clean ones. In addition, developing a more noisy
label-tolerant loss function on our design could also get an
extra performance gain.

VI. CONCLUSION

This article presents a simple yet effective two-stage frame-
work for semi-supervised medical image segmentation, with
the key idea of exploring the feature representation from
labeled and unlabeled images. We propose a stage-adaptive
contrastive learning method, including a BCL and a PCL.
In the first stage, the BCL loss regularizes the features by
pulling features sharing the same labels closer and push-
ing features with opposite labels further, arriving at a more
compact and well-separated feature space. This loss function,
together with AUA, which adaptively encourage consistency
by considering the ambiguity of medical images, enhances
pseudo label quality after the first stage of training. Improved
pseudo labels not only provide higher quality supervision
for the segmentation head but also generate more accurate
prototypes, which allows PCL to regularize a well-separated
feature space further. Specifically, the feature of each pixel is
pulled closer to its class centroid and pushed away from its
opposite class centroid, which translates to a more accurate
segmentation model. Our method achieves the best results
on three public medical image segmentation benchmarks, and
the ablation study validates the effectiveness of our proposed
method. Our future works include extending this work to
different types of medical data, such as X-ray images, fundus
images, and surgical videos.
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